
MTR 98B0000011

MITRE TECHNICAL REPORT

Space Communications Protocol Standards
(SCPS) FY97 DOD Test Report

February 1998

John Muhonen
Robert C. Durst

Sponsor: USSPACECOM/J4P Contract No.: F19628-94-C-0001
Dept. No.: D610 Project No.: 6380

The views, opinions and/or findings contained in this report
are those of The MITRE Corporation and should not be
construed as an official Government position, policy, or
decision, unless designated by other documentation.

Approved for public release; distribution unlimited.

© 1998 The MITRE Corporation. ALL RIGHTS RESERVED.

MITRE
Center for Air Force C3 Systems

iii

Abstract

The DOD has joined into a cooperative effort with the National Aeronautics and Space
Administration (NASA) and the National Security Agency (NSA) to develop the Space
Communication Protocol Standards (SCPS). This set of protocols has the potential to
increase the efficiency and reliability of data transfer, increase interoperability with both DOD
and non-DOD assets, and decrease the cost of operating our space systems. The protocols
also have potential applicability to military-tactical and mobile communication environments

Two experiments and a number of simulations were conducted in FY96 to evaluate the
performance of a subset of the SCPS protocols. This report summarizes the results of a third
test program which was developed in FY97 to further evaluate the performance of SCPS.
Although this test program did address functional testing of FP and NP, the focus was on the
end-to-end performance of SCPS TP and commercial TCP in networks that include at least
one satellite communications link.

In the presence of corruption on the satellite link, we concluded that SCPS TP performs
significantly better than TCP for high bandwidth-delay product links. The performance gain
was most pronounced for a high bit error rate (BER) and small packet sizes, but it was still
significant for very low BER and large packets. For smaller bandwidth-delay product links,
the performance of SCPS TP is still better than TCP, although the gain is not as large. In the
network congestion environment, the performance of each was similar.

KEYWORDS: SCPS, TCP, IP, FTP, Satellite Communications, end-to-end performance

v

Executive Summary

Purpose of Report
The purpose of this report is to clearly state the near-term applicability of the Space

Communications Protocol Standards (SCPS) to military satellite communications (SATCOM)
systems and users based on a test program that was conducted in FY97. To support this goal,
this test report summarizes the results of the FY97 test program and, in conjunction with test
plans and procedures, documents the activities which led to the collection of the information.

In general, the main sections of the report are primarily written for those potential users
and system program offices that are trying to understand how SCPS may benefit their
programs in the near term (0-5 years). Appendix A, however, presents a detailed analysis of
selected results from the transport protocol testing. This appendix, written more for the
protocol developer, describes the inner workings of these protocols and discusses why we
obtained the results we did.

Strategic Test Program Objectives
The primary objective of this muli-year test program is to demonstrate the potential utility

of SCPS to the DOD user community for two general satellite applications: Tracking,
Telemetry, and Command (TT&C) and satellite communications (SATCOM). For the
purposes of this test program, TT&C is defined as any application for which the satellite is
either the source or destination of the data. Satellite control (both payload and platform) data
is clearly TT&C, but mission data (warning, navigation, and environmental) is also viewed as
TT&C within the context of this definition. SATCOM, on the other hand, is defined as any
application for which the ground is both the source and destination of the data. It is the intent
of this test program to not only demonstrate the functionality of SCPS in these two
applications but also to quantify the performance of SCPS and identify user resources
required in order to use these protocols. The near-term (FY97) test activities focus on the
SATCOM application, as discussed next.

FY97 Test Program Objectives
FY97 testing supported the strategic objective of demonstrating the potential utility of

SCPS to the DOD user community for the SATCOM application. The functionality and
performance of SCPS in this application were demonstrated in a scenario that will potentially
benefit existing DOD SATCOM users.

The classical military SATCOM scenarios are: 1) a single user with a satellite terminal
wants to communicate with another single user (point-point), and 2) a single user wants to
communicate simultaneously with many users (broadcast). Error correction is typically

vi

implemented at the physical layer on a link-by-link basis. In these scenarios, no network
protocols are required due to the simplicity of the networks, and no end-to-end reliability
(transport layer) is implemented. However, there is a growing base of DOD information
exchanges utilizing networks on the ground which typically use the TCP/IP set of protocols.
Some of these exchanges may involve the use of a satellite link to provide connectivity to
geographically separated portions of the network. Using TCP over the typical satellite link
may result in poor throughput due to various combinations of: high data rates, relatively high
error rates, and large propagation delays.

SCPS has the potential to improve performance in this environment, and users/network
managers can determine which of the SCPS protocols are most beneficial for each scenario.
The primary goals of this test program were to: 1) quantify the performance of SCPS TP
relative to TCP in various environments, and 2) demonstrate a portion of the functionality of
FP. A Secondary goal was to demonstrate selected NP and SP functionality as time and
resources permitted. The rationale for these goals is described in the report.

Summary of Test Results

Transport Protocol

The performance of SCPS TP relative to TCP was evaluated separately in this test effort
for link corruption and network congestion environments.

In the corruption environment with congestion control turned off, SCPS-TP always
outperforms TCP over large bandwidth-delay product links (tested here on a 2 Mbps
transponder in geosynchronous orbit). Even with no bit errors on the link, TP performs better
than TCP due mostly to the slow-start congestion algorithm used with TCP. This
performance improvement is significant even for relatively large packets, but it becomes
substantial for smaller packets. And, the performance gains summarized herein would be
much greater if TP is compared to a version of TCP that does not implement the window
scaling option. As the BER on the link increases, the performance improvement of TP
relative to TCP in this environment also increases (even for large packets) due mostly to TP’s
ability to respond to bit errors as corruption, not congestion. Even when the congestion
control algorithm for TP is activated, TP still outperforms TCP in all cases except for when
large packets are being transmitted and there are no bit errors on the link. For these
conditions, TCP performs only marginally better than TP due to the differences in their
congestion control algorithms.

When the data rate on the link is reduced substantially (9600 bps in our case), the
performance gains of TP relative to TCP are not substantial. For larger file sizes and packets,
the performance is nearly identical at a low BER. As the link BER increases, TP has a
reasonable advantage over TCP. However, for the typical modulation and coding used on
military SATCOM links, this performance gain can be neutralized by a small increase (less

vii

than 0.5 dB) in signal-to-noise ratio on the physical link. The relative performance of TP
compared to TCP at this data rate is similar for small files and packets, except that TP has a
slight advantage over TCP even at a low BER.

In the congestion environment, the current implementation of SCPS TP performs similar
to TCP at the high data rate regardless of file or packet size. TCP may have a slight
advantage at very low congestion levels due to the differences in the congestion control
algorithms, but this seems to get reversed at higher levels of congestion.

At the lower data rate, TP and TCP appear to perform nearly identical for larger packet
sizes. When a smaller packet size is used, TP appears to have a slight advantage over TCP at
all levels of congestion.

File Handling Protocol

All record update and file transfer operations were successfully demonstrated, although
manual interrupt/restart and automatic interrupt/restart functions were never completed. A
problem was discovered with the implementation of the “sockets” programming interface in
the course of this testing, and we did not have sufficient resources on this test program to
resolve the problem.

Network Protocol

The function of NP signaling to TP in response to corruption or congestion was
successfully demonstrated. The function of NP packet precedence was also successfully
demonstrated by showing that the lowest priority packets always resulted in the longest
delays, while the highest priority packets always resulted in the shortest end-to-end delays.

Security Protocol

The intent of this test effort was to functionally demonstrate a subset of SCPS SP
features. However, sufficient resources did not exist to enable us to conduct these tests.

Conclusions
This test program was implemented in order to show the utility of SCPS to existing and

near-term DOD SATCOM applications. One of the biggest potential benefits of SCPS in
these near-term scenarios is provided by TP. The use of this protocol can result in reduced
end-to-end delays and increased throughput on corrupted links (SATCOM, in general) with
large bandwidth-delay products. When the link data rate or the propagation delay is small, the
performance gains are marginal. This has implications for DOD TT&C links as well because
they tend to be lower data rate links. However, we can expect data rates for TT&C links to
increase in the future as the demand for more capacity and more services increases. From this
and previous test efforts, we know that significant improvements in throughput are obtainable

viii

using SCPS-TP on transponded geosynchronous links starting at data rates somewhere
between 10 kbps and 200 kbps. Given the limited data we have, it is difficult to say at what
point the performance gain is significant, and this will depend on the requirements of each
user. Further testing and simulation should be conducted in conjunction with a more
comprehensive assessment of potential user requirements.

SCPS FP can benefit those near-term SATCOM users who need to transfer files or
individual records of files. As demonstrated in this test program, the ability to update records
instead of entire files can be of great benefit in resource-constrained environments (for
example, a low data rate link with a short access time). Although not successfully
demonstrated in this test program, the ability to automatically restart a file transfer after it is
interrupted (due to a link outage or other interruption in service) can be a significant benefit to
all DOD data transfer applications. Within the constraints of each potential application, future
users should consider implementing SCPS within the kernel of the operating system to avoid
some of the difficulties encountered in this test program.

SCPS NP can benefit some near-term SATCOM users (depending on the scenario) by
providing the capability to signal the presence of corruption or congestion to the transport
layer. Probably the most significant benefit for the near-term SATCOM users is the ability to
enforce packet precedence, which allows higher priority traffic to get through a congested
network.

Near-term SATCOM users can also benefit from the end-to-end security services
provided by SCPS SP. None of these services were demonstrated in this test program due to
limited project resources.

SMC, the DOD, NASA, and the International Organization for Standardization (ISO)
should continue to seek out near-term applications for SCPS as well as far-term ones.
Although the FY97 SCPS DOD test program focused on near-term SATCOM applications,
we should not lose sight of potential future applications of SCPS to DOD operations. SMC is
currently engaged in a study, with support from MITRE, to identify programs and classes of
programs that can be expected to benefit the most (technically) from implementing some or all
of the SCPS protocols.

There is also a benefit, although sometimes less tangible, of standardization.
Standardization has the potential for cost savings due of commonality among systems, but this
potential is not always realized. In addition, standardization can promote interoperability,
which more often increases capability but can also reduce cost. The four SCPS protocols are
currently in process as formal military standards and as ISO standards. In addition, SCPS has
been added to the current version of the Joint Technical Architecture (JTA).

More information on SCPS can be obtain at the following web site:
http://www.scps.org/scps. All of the SCPS documentation is available at this site, as well as

ix

points of contact and instructions on how to obtain a copy of the reference implementation
that was used in this test program.

x

Acknowledgments

The authors would like to acknowledge Pat Feighery of the MITRE Corporation for his
commitment and dedication in support of this test program. In particular, Mr. Feighery
conducted all of the testing for the network and file protocols and much of the testing for the
transport protocol. Additionally, Pat played an instrumental role in identifying and correcting
problems with the protocols and the test tools. We would also like to acknowledge everyone
at Rome Laboratories for making this test program possible. First, we would like to thank
Steven Yax and management of the Communications Directorate for supporting this effort at
no cost to the SMC program office. Second, we would like to thank Mr. Craig Evens, Mr.
David Legare, Mr. Peter Radesi, and Mr. Richard Smith for their professionalism and
individual dedication to this test program. A special thanks goes to Mr. Evens and Mr. Smith
for supporting many hours of late-night tested, which was crucial to obtaining performance
results on one of the protocols.

Finally, we would like to acknowledge Dave Collette and Elizabeth Newmiller, both of the
MITRE Corporation, for assisting in summarizing performance data for presentation and final
editing/production of the report, respectively.

xi

Table of Contents

Section Page

1 Introduction 1
1.1 Purpose of Report 1

1.2 Background 1

1.3 Strategic Test Program Objectives 2

1.4 Ideal Test Network Topology 2

1.5 Practical Test Network Topology 3

1.6 Document Organization 4

2 FY97 Test Program Definition 5
2.1 Specific FY97 Test Objectives 5

2.2 Test Resource Selection 7

2.3 Test Management 7
2.3.1 Test Director 7
2.3.2 Test Participants 7

2.4 Test Documentation 8

3 Protocol Test Results 9
3.1 Transport Protocol 9

3.1.1 Protocol Requirements 9
3.1.2 General Experiment Design 10
3.1.3 Test Method 10
3.1.4 Data Reduction 12
3.1.5 Summary of Results 12

3.2 File Handling Protocol 31
3.2.1 Protocol Requirements 31
3.2.2 General Experiment Design 31
3.2.3 Test Method 32
3.2.4 Data Reduction 32
3.2.5 Summary of Results 32

3.3 Network Protocol 33
3.3.1 Protocol Requirements 34
3.3.2 General Experiment Design 34
3.3.3 Test Method 34

Section Page

xii

3.3.4 Data Reduction 35
3.3.5 Summary of Results 35

4 Overall Test Summary 37
4.1 Transport Protocol 37

4.1.1 Corruption Environment 37
4.1.2 Congestion Environment 37

4.2 File Handling Protocol 38

4.3 Network Protocol 38

4.4 Security Protocol 38

5 Conclusions 39

List of References 41

Appendix Detailed Analysis of Selected Transport Test Results 43

Glossary 87

xiii

List of Figures

Figure Page

1 Ideal Test Network Topology 3

2 Practical Test Network Topology 4 11

3 Test Configuration 1 11

4 2 Mbps Corruption Throughput (4 Mbyte file, 1400 byte packets) 14

5 2 Mbps Corruption Delay (4 Mbyte file, 1400 byte packets) 16

6 2 Mbps Corruption Throughput (4 Mbyte file, 512 byte packets) 17

7 2 Mbps Corruption Delay (4 Mbyte file, 512 byte packets) 18

8 2 Mbps Corruption Throughput (.5 Mbyte file, 50 byte packets) 19

9 2 Mbps Corruption Delay (.5 Mbyte file, 50 byte packets) 20

10 9600 bps Corruption Throughput (.5 Mbyte file, 512 byte packets) 21

11 9600 bps Corruption Delay (.5 Mbyte file, 512 byte packets) 22

12 9600 bps Corruption Throughput (.5 Mbyte file, 50 byte packets) 23

13 9600 bps Corruption Delay (.5 Mbyte file, 50 byte packets) 24

14 2 Mbps Congestion Throughput (4 Mbyte file, 1400 byte packets) 25

15 2 Mbps Congestion Throughput (4 Mbyte file, 512 byte packets) 26

16 2 Mbps Congestion Throughput (.5 Mbyte file, 50 byte packets) 27

17 9600 bps Congestion Throughput (.5 Mbyte file, 512 byte packets) 28

18 9600 bps Congestion Throughput (.5 Mbyte file, 50 byte packets) 29

19 Test Configuration 2 33

A-1 TCP Sequence Numbers Versus Time Trace 47

Figure Page

xiv

A-2 TCP Slow Start Phase: Data and Acknowledgments 49

A-3 TCP Transmission Rate versus Time (No errors, No congestion) 50

A-4 SCPS-TP Sequence Number Versus Time Trace 52

A-5 SCPS-TP Slow-Start Phase: Data and Acknowledgments 54

A-6 SCPS-TP Data Rate versus Time (TCP Vegas Congestion Control Enabled) 55

A-7 SCPS-TP Sequence Number Versus Time Trace (Congestion Control
Disabled) 56

A-8 SCPS-TP Data Rate versus Time (Congestion Control Disabled) 57

A-9 Comparison of TCP with TP -- With and Without Congestion Control 60

A-10 Data rate versus time: TCP’s response to congestion 62

A-11 Aggregate Data Rate for TCP and Congestion Traffic 63

A-12 Estimated Router Buffer Use for TCP Congestion Test 65

A-13 Sequence Number versus Time Trace for TCP Congestion Test 66

A-14 Detail of TCP’s Recovery From Loss 69

A-15 Response of SCPS-TP Traffic to Congestion Traffic 74

A-16 Aggregate Data Rate for SCPS-TP and Congestion Traffic 75

A-17 Estimated Router Buffer Use for SCPS-TP Congestion Test 76

A-18 Effect of One Bit-Error on TCP (BER = 1E-7) 78

A-19 Detail of TCP Error Recovery 79

A-20 Effect of Two Bit-Errors on TCP (BER = 6E-7) 80

A-21 TCP Performance with 0, 1, and 2 Bit-Errors 81

Figure Page

xv

A-22 SCPS-TP Corruption Response (BER = 1E-6) 83

A-23 SCPS-TP Corruption Response (BER=1E-5) 84

A-24 SCPS-TP Corruption Response (BER = 5E-5) 85

xvi

List of Tables

Table Page

1 Priority of FY97 Protocol Tests 6

2 SCPS Transport Protocol Requirements 9

3 SCPS File Handling Protocol Requirements 31

4 SCPS Network Protocol Requirements 34

1

Section 1

Introduction

1.1 Purpose of Report
The purpose of this report is to clearly state the near-term applicability of the Space

Communications Protocol Standards (SCPS) to military satellite communications (SATCOM)
systems and users based on a test program that was conducted in FY97. To support this goal,
this test report summarizes the results of the FY97 test program and, in conjunction with test
plans and procedures, documents the activities which led to the collection of the information.

In general, the main sections of the report are primarily written for those potential users
and system program offices that are trying to understand how SCPS may benefit their
programs in the near term (0-5 years). Appendix A, however, presents a detailed analysis of
selected results from the transport protocol testing. This appendix, written more for the
protocol developer, describes the inner workings of these protocols and discusses why we
obtained the results we did.

1.2 Background
The DOD has joined into a cooperative effort with the National Aeronautics and Space

Administration (NASA) and the National Security Agency (NSA) to develop SCPS. The
DOD portion of this effort was originally managed by USSPACECOM/J4P; however, this
responsibility was transferred to the Space and Missiles System Center (SMC) during the
latter part of FY96. From the DOD viewpoint, this protocol set will increase the efficiency
and reliability of data transfer, increase interoperability with both DOD and non-DOD assets,
and decrease the cost of operating our space systems.

SCPS consist of a set of four protocols that operate at the network layer and above of the
Open Systems Interconnect (OSI) model. The File Handling Protocol (FP) is an application
layer protocol (layer 7 in the OSI model) that was derived from the Internet file transfer
protocol (FTP). FP is more capable than FTP in that individual records within a file can be
updated in addition to the entire file. Another important feature of NP is that a file transfer
can be automatically restarted after an interruption. The Transport Protocol (TP) is a
transport layer protocol (layer 4 in the OSI model) that was derived from the Internet
transmission control protocol (TCP). TP incorporates many of the recent improvements to
TCP (window scaling, timestamps, and the experimental congestion control mechanism
known as TCP Vegas) as well as some SCPS-defined enhancements, such as selective
negative acknowledgment and rate control. This allows TP to provide better end-end
throughput in the space environment by providing different responses to congestion and
corruption. The Security Protocol (SP) is based on the security protocol at layer 3 (SP3) and

2

the network layer security protocol (NLSP) with reduced overhead. SP does not have a
corresponding layer in the OSI sense, rather it operates between the network and transport
layers (layers 3 and 4). The Network Protocol (NP), as the name implies, is a network layer
protocol (layer 3 in the OSI model) that was developed to be a bit-efficient, scaleable protocol
for a broad range of spacecraft environments. Among other things, NP provides for a
selectable routing method, connectionless and managed connection operations, corruption and
congestion signaling to TP, and handling of packet precedence.

Two experiments and a number of simulations were conducted in FY96 to evaluate the
performance of a subset of the SCPS protocols. The SCPS Bent-Pipe Experiment
implemented a Space-Ground Link System (SGLS) transponder on a M-22 payload to relay
data between two ground nodes located in Sunnyvale, California. During this experiment, the
performance of TP was tested under various conditions of BER (Bit Error Rate), packet size,
and other TP parameters. The SCPS Space Technology Research Vehicle (STRV)
Experiment tested a portion of SCPS over a link between Lashum, England and the United
Kingdom Defense Research Agency’s STRV-1b spacecraft. Limited functional tests were
conducted for FP and SP, while both functional and performance testing of TP was
conducted. A physical problem with the antenna on this spacecraft severely limited the ability
to perform tests on this vehicle.

1.3 Strategic Test Program Objectives
The primary objective of this muli-year test program is to demonstrate the potential utility

of SCPS to the DOD user community for two general satellite applications: Tracking,
Telemetry, and Command (TT&C) and satellite communications (SATCOM). For the
purposes of this test program, TT&C is defined as any application for which the satellite is
either the source or destination of the data. Satellite control (both payload and platform) data
is clearly TT&C, but mission data (warning, navigation, and environmental) is also viewed as
TT&C within the context of this definition. SATCOM, on the other hand, is defined as any
application for which the ground is both the source and destination of the data. It is the intent
of this test program to not only demonstrate the functionality of SCPS in these two
applications but also to quantify the performance of SCPS and identify user resources required
in order to use these protocols. The near-term (FY97) test activities focused on the
SATCOM application, as discussed in section 2.1.

1.4 Ideal Test Network Topology
The ideal network topology for testing the SCPS protocols is depicted in Figure 1. This is

ideal because it would demonstrate the widest range of SCPS capabilities. Here, there are
many network nodes in space, all running the full SCPS stack. These nodes are richly
connected at the physical or data link layers, and each node may also have extensive on-board
networks with individually addressable entities. For the TT&C test scenario, a connection

3

would have one end on the ground while the other end would be at one of the nodes in space.
For the SATCOM test scenario, both ends of any connection would be on the ground.

The space segment of this ideal topology does not exist today. Therefore, if we are to
demonstrate the utility of SCPS to potential DOD users any time in the near future, we must
not only emulate realistic DOD network topologies (existing and near future [5-10 years]),
but we must also chose a topology that exists or can be readily constructed.

0 Many nodes in space (all
running SCPS FP,TP,SP,NP)

0 On-board networks

0 Richly connected

(at physical/logical layer)

0 Long delays on links

0 Varying capacity on links

0 Control error rate on links

SN1

SN2

SN3

SN4

SN5

SN6

GN1 GN2

Figure 1. Ideal Test Network Topology

1.5 Practical Test Network Topology
A more practical test network topology is depicted in Figure 2. This network can be

constructed today, it more closely resembles networks that will exist in the DOD for the next
5-10 years, and it supports both the TT&C application and the SATCOM application.

For TT&C, one end of the network would be on the ground, possibly at Ground Node #1
(GN1), and the other end would be at Space Node #1 (SN1). Due to schedule and budget
constraints, this type of test was not possible in fiscal year 1997 (FY97). However, this test
would support the overall strategic goals of the test program, and TT&C tests of this nature
should be performed in the future as our DOD TT&C networks evolve.

4

For the SATCOM application, both ends of a network connection would be on the
ground, possibly at GN1 and GN7 in Figure 2. For existing and near-future systems, there
will not be a network node in space, and SN1 in this figure can be replaced by a physical layer
repeater (i.e., a transponder or bent-pipe). Even Milstar, which does all of its processing on
user data circuits at the physical and data link layers, can be treated the same (from the
network layer and above perspective) as other SATCOM systems once a call is set up. FY97
DOD testing of SCPS directly supported the SATCOM application.

0 Multiple nodes on ground
- All running SCPS
- Connection oriented
- Data rate, error rate,

and delay controlled
0 One node at GEO

- SN1 running SCPS
- Long delay
- Error rate controlled

0 All comm to SN1 encrypted
0 Ends defined by TT&C or

SATCOM application

SN1

GN3

GN4

GN5

GN6

GN7

GN1
GN2

Figure 2. Practical Test Network Topology

1.6 Document Organization
Section 2 defines the FY97 SCPS DOD test program in general terms. Test objectives are

stated, test management is defined, and general test resources are identified. Section 3 defines
specific tests that were conducted. For each protocol test, the protocol requirements to be
verified are presented, the overall experiment design is described, data reduction is discussed,
and a summary of the results is presented. Section 4 presents an overall test summary, and
Section 5 states the conclusions from this test effort.

5

Section 2

FY97 Test Program Definition

2.1 Specific FY97 Test Objectives
FY97 testing supported the strategic objective of demonstrating the potential utility of

SCPS to the DOD user community for the SATCOM application. The functionality and
performance of SCPS in this application were demonstrated in a scenario that will potentially
benefit existing DOD SATCOM users.

The classical military SATCOM scenarios are: 1) a single user with a satellite terminal
wants to communicate with another single user (point-point), and 2) a single user wants to
communicate simultaneously with many users (broadcast). Error correction is typically
implemented at the physical layer on a link-by-link basis. In these scenarios, no network
protocols are required due to the simplicity of the networks, and no end-to-end reliability
(transport layer) is implemented. However, there is a growing base of DOD information
exchanges utilizing networks on the ground which typically use the TCP/IP set of protocols.
Some of these exchanges may involve the use of a satellite link to provide connectivity to
geographically separated portions of the network. Using TCP over the typical satellite link
may result in poor throughput due to various combinations of: high data rates, relatively high
error rates, and large propagation delays.

SCPS has the potential to improve performance in this environment, and users/network
managers can determine which of the SCPS protocols are most beneficial for each scenario.
For example, SCPS TP generally exhibits better throughput than typical commercial
implementations of TCP in the space environment for the following reasons. First, TP allows
for window scaling so that a larger number of bytes can be in transit (end-to-end) before an
acknowledgment is sent to release the next segment. This is an option available on TCP that
is not always implemented. Second, TP is able to respond to corruption (e.g. SATCOM link)
in addition to congestion, so it does not automatically back off the transmission rate and
initiate the congestion control algorithms (that TCP does) when errors are due to corruption.
Third, TP uses selective negative acknowledgment (SNACK) to identify those packets in
error to be retransmitted. TCP, with its cumulative acknowledgment mechanism, does not
have the ability to signal missing segments beyond the one being acknowledged. If more than
one packet is corrupted, TCP is severely limited in its ability to recover in an environment
with long delays (i.e., after the first is retransmitted, a round trip delay will pass before TCP is
informed of any subsequent losses). A selective acknowledgment (SACK) option for TCP is
forthcoming, which will provide similar information to the SCPS SNACK option but in a less
bit-efficient manner. Finally, SCPS TP allows for header compression, which can also reduce
the overhead associated with a connection. Compared to the other SCPS protocols, TP has
the largest potential for improved performance in this environment, and as such, the minimum
goal of FY97 testing was to demonstrate this improvement over commercial TCP.

SCPS FP may be desirable to a SATCOM user if that user has a need to transfer files or
individual records of files and may want the protocol to automatically resume the transfer
after it was interrupted. Therefore, the goal was to partially demonstrate this FP functionality,

6

but because not all SATCOM users will have these needs, detailed performance testing with
comparison to commercial FTP was not planned.

In addition to other potential benefits, SCPS NP provides for packet precedence, signaling
to TP for corruption, and less overhead than IP. These functions may or may not be
important to any given user in this SATCOM environment. On one extreme, if no packet
precedence is needed, if the network is relatively simple, and if only corruption can be
expected on the satellite link (no network congestion), then NP is not needed (i.e., TP can be
implemented over IP and set to respond only to corruption). On the other extreme, if all the
features of NP are desired, they can be made available if there is willingness to install SCPS at
each node in the network. In other cases, users may want to realize the potential benefits of
SCPS over a satellite link, but they may have to interface with existing TCP/IP-based
networks on the ground. Even in this scenario, TP/NP encapsulated by IP can provide better
performance than TCP/IP in the corruption environment. In the test planning phases, we tried
to evaluate what near-term scenarios would be applicable to most users as we structured
individual tests. The resulting goal of FY97 testing was to evaluate selected NP functionality
as time and resources permitted.

The SCPS SP protocol provides end-to-end security services. Physically, it resides
between the network and transport protocol layers. The end points protected by SP can vary
widely. For the TT&C application, an end point could be an instrument operator on the
ground connecting to an onboard instrument or a ground control center connecting to a data
handling front-end aboard a spacecraft. For the SATCOM application, the end point might be
only within the ground network and link security services (e.g., discrete encryption devices)
might be used to protect the space-ground link. Because SP is algorithm-neutral (algorithm
choices are left as a local security implementation decision), the objective in FY97 was to
functional test SP as time and resources permitted.

Table 1 identifies the priority of SCPS FY97 testing applied in support of the SATCOM
application. Note that in the second column, a designation of TP/IP means that the higher
layer protocol TP is running on top of IP. And, the designation [SCPS]IP indicates that
FP/TP/SP is running on top of NP which is encapsulated by IP (a protocol running at the
same layer as NP). Specific configurations under which the protocols were tested are defined
in section 3.

Table 1. Priority of FY97 Protocol Tests

Protocol Under Test Protocol Environment Test Configuration Type of Test

TCP TCP/IP 1 P

TP TP/IP 1 F, P

FP FP/TP/IP 1 F

NP [TP/NP]IP 2 F

SP [SCPS]IP 2 F

F=functional test, P=performance test

7

2.2 Test Resource Selection
A number of platforms and ground networks were considered in support of the FY97

DOD SATCOM test objectives. The primary platforms under consideration were: the
Defense Satellite Communication System (DSCS), Milstar, Fleet Satellite Communication
System (FLTSAT), and Advanced Communication Technology Satellite (ACTS). The
primary networks were the MITRE, Bedford, Milstar networks laboratory and various Rome
Laboratory networks, although others were considered.

After careful consideration, we chose Rome Laboratory as the site to support FY97 DOD
SCPS testing over an ACTS link. The primary reasons for this decision were the relative
flexibility of the Rome Labs resources (wide range of adjustable data rates and bit error rates,
numerous network configurations, and the availability of transportable terminals) and the
overall lower cost of conducting tests.

2.3 Test Management

2.3.1 Test Director

A representative from SMC/ADC acted as the test director for all FY97 DOD SATCOM
testing. The test director oversaw the conduct of all tests and had the authority to proceed or
abort test activity on a daily basis. This responsibility was, in general, delegated to MITRE
throughout most of the testing.

2.3.2 Test Participants

A representative from The MITRE Corporation acted as the test conductor for all FY97
SATCOM testing. As such, MITRE was responsible for the overall planning, scheduling, and
conduct of these tests. Specifically, MITRE:

• Prepared all test plans and procedures;
• Conducted site survey, installed protocol software, developed protocol specific

interfaces to network and terminal resources;
• Coordinated with test participants to ensure availability of all test resources,

including test documentation, equipment, facilities, and personnel;
• Conducted all tests in accordance with test plans and procedures;
• Redlined test procedures during tests as required;
• Conducted any in-process data reduction or analysis as required; and
• Prepared the report.

A representative of Rome Laboratory was responsible for coordinating all satellite
resources, test equipment, and facilities required to perform FY97 SATCOM testing. The
Rome Laboratory personnel:

• Reviewed and commented on all test plans and procedures;
• Scheduled satellite resources with NASA;

8

• Configured all network and terminal equipment and established the physical
SATCOM links to the terminals; and

• Assisted in the general conduct of the tests.

2.4 Test Documentation
The formal documentation associated with this effort consists of: a test plan, a set of test

procedures, and this test report. The test plan [1] documented the overall test planning effort.
It defined the FY97 SCPS DOD test program by identifying test objectives, management,
schedule, required test resources, and specific tests to be conducted. The test procedures [2]
ensured that each test was conducted as planned and provided adequate documentation of
each test to fully understand the conditions under which results were obtained. This test
report defines each test performed, summarizes detailed test data collected during testing,
explains the results of each protocol test, and provides an overall summary of the test results.

9

Section 3

Protocol Test Results

3.1 Transport Protocol
SCPS TP testing took the highest priority in FY97 in support of potential DOD SATCOM

users. Tests were conducted to demonstrate both the functionality and the performance of
TP. For the performance tests, measurements were taken relative to TCP performance under
two main categories for the network environment: congestion or corruption. Test were
conducted intentionally under separate controlled environments to be able to more clearly
state results upon completion of the tests.

3.1.1 Protocol Requirements

Table 2 identifies those functional and performance requirements of TP that were tested in
the SATCOM environment. These were derived from [3].

Table 2. SCPS Transport Protocol Requirements

Ref
Para

Requirement Type of
Test

T.1 Full reliability (provided there is end-to-end link availability and sufficient link
capacity for retransmissions).

N/A

T.1.1 Shall provide the capability to deliver all data segments to the correct destinations,
as addressed at the source.

F

T.1.2 Shall provide the capability to deliver all data segments in the same order as
originated at the source, with no duplicate or extraneous data.

F

T.1.3 Shall provide the capability to deliver all data segments for which there are no
detected errors.

F

T.1.4 Shall provide the capability to recover from detected data transmission errors. P

T.7 Operation over a wide range of conditions. N/A

T.7.3 Shall be able to operate reliably under the delay, bandwidth, and error conditions
typical of space-based communication environments.

P

T.9 Response to congestion and corruption. N/A

T.9.1 Shall provide the capability to differentiate between network congestion and
network data corruption, as identified by the network level protocol.

F

T.9.2 Shall provide the capability to counteract the identified network congestion
anomalies.

P

T.9.3 Shall provide the capability to compensate for the identified network data
corruption anomalies.

P

F=functional test, P=performance test

10

3.1.2 General Experiment Design

All TP performance testing was conducted under two primary network environments.
First, TP was tested under various levels of satellite link corruption without ground network
congestion. At each level of corruption, parametric data was collected to determine the
overall utility of TP to potential near-term DOD users. Specifically, throughput an delay were
characterized as a function of data rate, BER, file size, and packet size. This characterization
is the focus of this report. In addition, a number of secondary protocol, link, and user traffic
factors were varied to collect engineering information of value to the protocol developers.
These parameters and other details are discussed further in Appendix A.

Second, TP was tested under various levels of ground network congestion without
satellite link corruption. Data rate, TP packet size, and other secondary factors were varied
and the same performance parameters were measured.

In order to state performance results of value to both potential users and developers, end-
to-end performance was characterized first for TP, then the tests were repeated while
operating a commercial version of TCP.

3.1.3 Test Method

3.1.3.1 Corruption Environment
We adopted the general method of using Expect script language from FY96 SCPS TP

testing to the extent possible to automate the test procedures. Scripts developed for FY96
SCPS TP testing were modified to maximize efficiency in automating FY97 tests.

The specific network configuration used for TP performance testing is identified in Figure
3. For corruption environment tests, WS1 hosted TCP/IP, TP/IP, and the test drivers
associated with the source end of the connection. WS2 hosted TCP/IP, TP/IP, and test
drivers associated with the destination end of the connection. During these tests, WS3, which
generates congestion traffic, remained connected to the local area network (LAN), but did not
generate any traffic. Throughout the testing, the tests were executed and data was collected
both locally at Rome Laboratory and remotely from Reston, VA as indicated in Figure 3.

All workstations, routers, satellite terminals, and interconnections were provided by Rome
Laboratories. The modems which operated over the ACTS link were Com Stream CM701
digital modems. Most of the protocol tests were conducted over a quadri-phase shift key
(QPSK) modulated link; however, some of the low data rate tests were done using binary
phase shift keying (BPSK). In all cases, forward error correction was employed that is most
common on DOD SATCOM links (rate 1/2, constraint length 7, convolutional coding). The
Com Stream modem employs a fairly versatile BER tester, which enabled us to make direct
measurements of BER on the SATCOM link being used for the protocol tests. These BER
testers, and the modems in general, were controlled remotely through an RS-232 interface.

A general overview of the steps taken to acquire the data summarized in this test report
can be found in the test plan [1], and the specific steps taken are described in detail in the test
procedures [2].

Note that the configuration tested in Figure 3 is of most wide-spread interest to near-term
DOD users and network managers. As stated earlier, some users will be able to benefit from

11

other SCPS protocols and some will not. However, for any network that has at least one
satellite link in it, better overall throughput is possible by replacing TCP at the end systems
with SCPS TP. As shown in Figure 3, none of the intermediate nodes are required to run any
of the SCPS protocols in order to realize the performance gains.

RS-449
RS-232

Reston or
Col Springs

Remote
Test

Control

Ethernet LAN

SOURCE
END

CISCO 4000 Router #1

Congestion
Traffic

Generator

Traffic
Monitor

WS1 WS3 WS4

Rome Labs
Network #1

DESTINATION
END

Router #2

WS2

Rome Labs
Network #2

TCP/IP
or

TP/IP
or

FP/TP/IP
and
Test

Drivers

IP

TCP/IP
or

TP/IP
or

FP/TP/IP
and
Test

Drivers

IP

ACTS Satellite

RS-449

Terminal #1 Terminal #2 (transportable)

RS-232

Test
Controller

WS7

RLCN
Gateway

Rome Laboratory Corporate Network

Figure 3. Test Configuration 1

3.1.3.2 Congestion Environment
The specific network configuration identified in Figure 3 was also used for congestion

testing of TP. Here, WS1 hosted TCP/IP, TP/IP, and the test drivers associated with the
source end of the connection. WS2 hosted TCP/IP, TP/IP, and test drivers associated with
the destination end of the connection. WS3 generated random traffic to produce various
levels of congestion to the satellite link (and therefore, the RS-449 interface to the CISCO
4000 router). We selected a uniformly distributed (with a minimum of zero and a maximum
to be specified in each test) random traffic generator to emulate the aggregate of traffic that
might be experienced from a number of independent data sources. This was then combined
with the intended user traffic (an adaptive level generated at up to the maximum capacity of
the SATCOM link). The resultant traffic presented at the unit being congested, was a
uniformly distributed random variable with a minimum equal to the link data rate and a
maximum specified in terms of the capacity of the link. For example, if 200% congestion was
specified for a test, the maximum aggregate traffic was two times the capacity of the link.

We did not set this test up to be a rigorous assessment of SCPS TP performance in the
congestion environment. Rather, we intended this to be a high level verification that SCPS
TP would perform on approximately the same level as TCP in this environment.

12

3.1.4 Data Reduction

For each test, raw data was collected in the form of the following files: tcpdump (WS4),
the TCP responder log (WS2), and the TP responder log (WS2). Initial data reduction was
performed by the test drivers to derive the primary measures of performance (end-to-end
throughput and delay). Delay was directly calculated by measuring the elapsed time between
when the first packet arrived at the destination and when the acknowledgment of the last
packet was sent by the destination. Throughput was then calculated by dividing the amount
of data in the transfer by the delay.

Data was collected for multiple test runs under identical conditions; however, each test
was repeated only five times to conserve on test resources. Averages and standard deviations
were subsequently calculated for each case, and the classical confidence intervals were
derived. The Student-t distribution was used instead of the standard normal distribution
because the sample size was small and the population is believed to be normal. Therefore, the
y-axis error bars displayed for data in the next section represent the 95% confidence bounds
using this approach (i.e., the probability is .95 that the actual mean is within the error bounds,
given the sample mean and variance).

3.1.5 Summary of Results

SCPS TP and TCP performance results are summarized here separately for link corruption
and network congestion environments for a number of reasons, not the least of which is the
fact that the results are easier to understand. Also, a number of key issues should be kept in
mind when interpreting the results.

First, when we developed the test plan [1] for this effort, we focused our attention on
scenarios representative of existing and near-term DOD SATCOM users (less than five years).
Through a partial survey of the DOD user community, we found that an increasing number of
SATCOM users are connecting into TCP/IP-based networks. In this general scenario, a given
user typically understands the SATCOM assets at his disposal, and he does not attempt to
congest this resource with more traffic than it can support (although TCP can congest the link
without the user knowing it if not configured properly). He also is not in contention with
other users for the resource once it is allocated.

Second, although the potential benefits of TP (and SCPS in general) are numerous, the
biggest benefit to near-term DOD SATCOM users is increased throughput (reduced delay) on
corrupted links (SATCOM, in general) with large bandwidth-delay products. The primary
comparison of TP to TCP in the corruption environment is done (in sections 3.1.5.1 and
3.1.5.2) with congestion control turned off for TP. However, comparisons in the corruption
environment are also made with TP’s congestion control algorithm turned on. Not only does
this provide more information in general, this also indicates the performance penalty a user
may expect to experience if he anticipates some network congestion and wants to set up TP
to be able to respond to it. This will become increasingly important as we: 1) develop future
implementations of demand-assigned multiple access (DAMA) in the various military bands,
2) incorporate other means of bandwidth sharing of satellite resources (both connection
oriented and connectionless), and 3) establish more communications architectures that consist of
combinations of dissimilar networks with various communications media and protocols.

13

Third, it is important to note that all corruption testing was done under mildly bursty
conditions due to atmospherics on the SATCOM link. All data was taken over an ACTS link
using BPSK or QPSK modulation and rate 1/2, constraint length 7, convolutional coding.
However, the available modem did not implement an interleaver in conjunction with the
convolutional coding. This scenario is typical of most DOD SATCOM links except that an
interleaver is generally used with such coding. An interleaver will spread out the errors (in
time) resulting from a burst error so that they are no longer correlated (if properly designed
for the anticipated duration of most bursts). The combination is very effective because
convolutional codes are very powerful in response to random errors. Since we did not test
with an interleaver, even relatively small variations in signal level caused our error statistics to
be more bursty than would be expected on a typical DOD link. In an attempt to mitigate
these effects, we performed most of the critical corruption testing during evening and late
night hours when the atmosphere was less turbulent. This helped considerably, but it did not
completely remove the problem. As a result, both protocols performed somewhat better than
would be expected for a channel with uncorrelated, random errors. Due to resource
constraints on the project, we were not able to fully characterize the error statistics for this
testing, and all error bars on the measured BER in the charts that follow are simply estimates
based on the variation in signal level during the testing. Although the channel error statistics
were not fully characterized for this testing, a parallel simulation effort was conducted on this
project with a random distribution of errors on the channel. This simulation effort will be
documented in a separate report.

Fourth, the comparison of TP to TCP in the congestion environment is done in sections
3.1.5.3 and 3.1.5.4. Congestion testing was not as thorough as corruption testing because of
the perceived relative importance to near-term DOD SATCOM users.

Finally, it should be noted that the implementation of TCP used for this testing was within
the kernel of the operating system, which is typically the case. Operational use of SCPS-TP
can also be expected to be implemented this way or via a gateway. Implementation inside the
kernel allows for COTS applications (in addition to SCPS-FP) to have SCPS-TP available to
them. During the SCPS testing, we experienced some problems in making fair comparisons
between an in-kernel TCP and an out-of-kernel TP. On infinitely fast machines, the
performance penalty is negligible; however, the workstations used in this test effort were
older 486 machines running at 66 MHz. This resulted in a less than optimum implementation
for SCPS TP.

For all the above reasons, care should be taken in interpreting how the results presented
here relate to specific existing or planned scenarios. In the following sections, results are
presented as a family of curves indicating the end-to-end performance of each protocol as a
function of the primary independent variable for that environment.

3.1.5.1 Corruption Testing - High Data Rate
For corruption testing, the primary independent variable is the BER on the satellite link.

For these tests, throughput and delay were measured as a function of BER for various
combinations of two data rates, three packet sizes, and two file sizes.

The high data rate selected for these tests was 2 Mbps [1]. At this data rate, the
performance of SCPS TP was compared to that of TCP at three packet sizes. Figure 4

14

indicates the relative throughput performance of these two protocols when attempting to send
a relatively large file (4 Mbyte) over this geosynchronous link using large packets (1400 bytes
plus headers) appropriately sized for the file. In this figure, throughput is expressed as a
percentage of the maximum link capacity available. Therefore, 100% throughput is equivalent
to 2 Mbps.

0

10

20

30

40

50

60

70

80

90

100

100 110 120 130 140 150 160 170 180 190 200

Congestion (random variable): max % of link capacity

T
hr

ou
gh

pu
t (

%
 o

f 2
 M

bp
s)

TP norm

TCP

Figure 4. 2 Mbps Corruption Throughput (4 Mbyte file, 1400 byte packets)

If corruption is experienced on the satellite link and very little network congestion is
present on the ground links, then TP can respond to errors as if they were a result of
corruption (for the purposes of this report, we have defined a link to be corrupted if the BER
is greater than 1x10-8). This can be done dynamically by signaling from NP if it is present, or
it can be set by the network manager for a specific static scenario. For the 2 Mbps data rate
and large packet size, the performance gain of TP over TCP can be seen in Figure 4 by
comparing the two solid curves (TP’s congestion control algorithm is turned off). For this
particular set of data, window scaling was implemented for both SCPS TP and TCP and set to
an appropriate value given the bandwidth-delay product of the link. We wanted to give TCP
this benefit in the comparison even though many commercial implementations of TCP do not
include the window scaling option. With this option, the throughput of TP is approximately
93% versus 74% for TCP at low BER (mostly due to TCP’s slow-start algorithm). This

15

performance difference would have been much greater if TCP window scaling was not
implemented because more time would be spent waiting for acknowledgments with small
segments in transit instead of transmitting data.

As seen in Figure 4, TCP starts performing very poorly compared to TP as the BER
increases beyond 1x10-6. At 1x10-5, TCP is already down to 8% throughput while TP is still
at 88%. As the error rate increases on the link, TCP responds as if the errors were due to
congestion, and it reduces its transmission rate in an attempt to control the (perceived)
congestion. Not only does TP avoid this response, it also implements a selective negative
acknowledgment scheme to signal missing packets more efficiently, so that retransmissions
may be made promptly.

A user/network manager may want to turn on congestion control depending on the
scenario, and the dashed curve in Figure 4 indicates the expected performance of TP (in this
corruption environment) when it is set to be able to respond to congestion also. Here, TP
performs only slightly worse than TCP at low BER (due to the differences in the congestion
control algorithms), but it clearly outperforms TCP at 1x10-6, and higher, error rates.

Throughput data for these tests was actually derived by measuring the delays of the
packets from source to destination and knowing the amount of data transmitted. For
example, Figure 5 displays the overall network delay experienced for these two protocols
which resulted in the throughput summaries in Figure 4. For a 4 Mbyte file and 1400 byte
packets over a virtually error-free 2 Mbps geosynchronous SATCOM link, using SCPS TP
will result in a delay of approximately 16.8 seconds, whereas using TCP will result in roughly
21.1 seconds. This may or may not be significant to users, but as we will see shortly, the
difference becomes more significant with smaller packet size. However, for these large
packets, the delay becomes noticeably worse for TCP (Figure 5) as the BER increases past
1x10-6. By 5x10-5, the delay for TCP is nearly 450 seconds while TP is resulting in only a
21.7 second delay.

16

0

50

100

150

200

250

300

350

400

450

500

1.00E-08 1.00E-07 1.00E-06 1.00E-05 1.00E-04 1.00E-03

Link Bit Error Rate

TP, CC off

TCP

CC = congestion control

Figure 5. 2 Mbps Corruption Delay (4 Mbyte file, 1400 byte packets)

As the packet size gets smaller for this relatively high data rate geosynchronous link, the
difference between SCPS TP and TCP end-to-end performance becomes more dramatic. For
example, Figures 6 and 7 depict throughput and delay, respectively, for these two protocols
under the same conditions as the previous data with the exception that now the packet size is
reduced to 512 bytes. As seen in Figure 6, the throughput of TCP has dropped all the way
down to 40% even on an error-free link. This, again, is due primarily to the TCP slow-start
algorithm operating on a very large bandwidth-delay product link. SCPS TP, on the other
hand, is performing nearly as well as when the packets were 1400 bytes. As the BER
increases past 1x10-5, SCPS TP still maintains very good throughput, while TCP drops down
into 2-8% range as it did with larger packets.

17

0

10

20

30

40

50

60

70

80

90

100

1.00E-08 1.00E-07 1.00E-06 1.00E-05 1.00E-04 1.00E-03

Link Bit Error Rate

TP, CC off
TP, CC on
TCP

CC = congestion control

Figure 6. 2 Mbps Corruption Throughput (4 Mbyte file, 512 byte packets)

Similar end-to-end delay performance is displayed in Figure 7. Starting with no bit errors
on the link, the delay experienced by SCPS TP is approximately 18.1 seconds compared to
38.1 seconds for TCP. As the BER increases, the delay with TCP increases very rapidly, but
the delay for TP remains relatively flat. In fact, the performance of TCP with this packet size
degrades enough at error rates higher than 1x10-5, that it becomes difficult to even close a
connection.

18

0

50

100

150

200

250

300

350

400

450

500

1.00E-08 1.00E-07 1.00E-06 1.00E-05 1.00E-04 1.00E-03

Link Bit Error Rate

TP , CC off
TCP

CC = congestion control

Figure 7. 2 Mbps Corruption Delay (4 Mbyte file, 512 byte packets)

The general trend in the performance differences between SCPS TP and TCP continues as
the packet size is reduced further. Figures 8 and 9 depict throughput and delay, respectively,
for these two protocols on a 2 Mbps link with a .5 Mbyte file and 50 byte packets. Here, the
file size is reduced to be more realistic with a much smaller packet size. As seen in Figure 8,
TCP throughput starts out at less than 10% even with no errors on the link. This is to be
expected because a smaller amount of data is initially transit as the protocol is waiting on an
acknowledgment (due to the slow-start algorithm). SCPS TP also suffers on this high data
rate link with small files and small packets (just over 25% throughput with no bit errors), but
it is still over 2.5 times better than TCP for these same conditions. As the BER increases,
TCP performance degrades as before, but this time the curve looks much flatter because it
starts so poorly at lower error rates. However, TP maintains its performance very well as the
link error rate increases.

19

0

5

10

15

20

25

30

35

40

1.00E-08 1.00E-07 1.00E-06 1.00E-05 1.00E-04 1.00E-03

Link Bit Error Rate

TP, CC off
TP, CC on
TCP

CC = congestion control

Figure 8. 2 Mbps Corruption Throughput (.5 Mbyte file, 50 byte packets)

End-to-end delay performance is displayed in Figure 9 for the 50 byte packets and the .5
Mbyte file. Starting with no bit errors on the link, the delay experience by SCPS TP is
approximately 7.6 seconds compared to 20 seconds for TCP. As the BER increases, the
delay with TCP increases very rapidly, but the delay for TP remains relatively flat.

20

0

50

100

150

200

250

300

350

400

450

500

1.00E-08 1.00E-07 1.00E-06 1.00E-05 1.00E-04 1.00E-03

Link Bit Error Rate

TP , CC off

TCP

CC = congestion control

Figure 9. 2 Mbps Corruption Delay (.5 Mbyte file, 50 byte packets)

3.1.5.2 Corruption Testing - Low Data Rate
The low data rate selected for these tests was 9600 bps [1]. At this data rate, the

performance of SCPS TP was compared to that of TCP at two packet sizes. The results of
this comparison indicate a somewhat different story than for high data rate SATCOM links.
Figure 10 indicates the relative throughput performance of these two protocols when
attempting to send a medium size file (.5 Mbyte) over this 9600 bps geosynchronous link
using 512 byte packets. As in the previous section, throughput is expressed as a percentage
of the maximum link capacity available. Therefore, 100% throughput is equivalent to 9600
bps.

21

0

10

20

30

40

50

60

70

80

90

100

1.00E-08 1.00E-07 1.00E-06 1.00E-05 1.00E-04 1.00E-03

Link Bit Error Rate

TP, CC off

TCP

CC = congestion control

Figure 10. 9600 bps Corruption Throughput (.5 Mbyte file, 512 byte packets)

As seen in Figure 10, the throughput performance of both protocols is nearly identical
(within statistical significance) when no bit errors are present on the link. The relative
performance is the same for SCPS TP and TCP all the way out to 1x10-5 BER. It is not until
a BER of 1x10-4 that a significant difference in performance is seen. But even then, a small
increase in signal level on the link (less than .5 dB increase would decrease the BER from
1x10-4 to 1x10-5) would bring the throughput performance of TCP back up to that of TP.
Note that this would be true of any link that incorporates rate 1/2, constraint length 7,
convolutional coding (as most DOD SATCOM links do).

The relative end-to-end delay performance under these conditions is depicted in Figure 11.
As expected based on the throughput results, the delay of TP and TCP is nearly identical from
very low BER all the way out to 1x10-5. Then, the delay experienced by using TCP starts
increasing more rapidly for TCP than for TP.

22

400

600

800

1000

1200

1400

1600

1800

2000

1.00E-08 1.00E-07 1.00E-06 1.00E-05 1.00E-04 1.00E-03

Link Bit Error Rate

TP

TCP

Figure 11. 9600 bps Corruption Delay (.5 Mbyte file, 512 byte packets)

When the packet size is reduced to 50 bytes on this relatively low data rate
geosynchronous link, the results of our testing indicate only a slight advantage in end-to-end
performance of TP, even at low BER. Figures 12 and 13 depict throughput and delay,
respectively, for these two protocols on a 9600 bps link for a .5 Mbyte file using 50 byte
packets. As seen in Figure 12, the throughput of TCP is in the high 40s (percent) from low
BER all the way out to 1x10-5. TP maintains a throughput of approximately 54% from low
BER out to 1x10-5.

23

0

10

20

30

40

50

60

70

80

90

100

1.00E-08 1.00E-07 1.00E-06 1.00E-05 1.00E-04 1.00E-03

Link Bit Error Rate

TP, CC off
TCP

CC = congestion control

Figure 12. 9600 bps Corruption Throughput (.5 Mbyte file, 50 byte packets)

The relative end-to-end delay performance of TP for low data rate and 50 byte packets
has a slight advantage over TCP at low BER, as depicted in Figure 13. As expected based on
the throughput results, the delay experienced by using TCP starts increasing more rapidly for
TCP than for TP at error rates on the link higher than 1x10-5.

24

400

600

800

1000

1200

1400

1600

1800

2000

1.00E-08 1.00E-07 1.00E-06 1.00E-05 1.00E-04 1.00E-03

Link Bit Error Rate

TP

TCP

Figure 13. 9600 bps Corruption Delay (.5 Mbyte file, 50 byte packets)

3.1.5.3 Congestion Testing - High Data Rate
For congestion testing, the primary independent variable is the level of congestion present

in the network. For these tests, throughput and delay were measured as a function of
network congestion for two different data rates, three packet sizes, and two file sizes.

The high data rate selected for these tests was 2 Mbps [1]. At this data rate, the
congestion performance of SCPS TP was compared to that of TCP at three packet sizes.
Figure 14 indicates the relative throughput performance of these two protocols when
attempting to send a relatively large file (4 Mbyte) over this geosynchronous link using large
packets (1400 bytes) appropriately sized for the file. As in previous figures, throughput is
expressed as a percentage of the maximum link capacity available. Therefore, 100%
throughput is equivalent to 2 Mbps.

25

0

10

20

30

40

50

60

70

80

90

100

100 110 120 130 140 150 160 170 180 190 200

Congestion (random variable): max % of link capacity

TP norm

TCP

Figure 14. 2 Mbps Congestion Throughput (4 Mbyte file, 1400 byte packets)

As stated earlier, the data source (see Figure 3) for these tests always generated data at a
rate matched to the capacity of the SATCOM link. However, depending on the transport
protocol being used, the instantaneous traffic offered on the connection may have actually
been greater than the capacity of the link. In addition, the congestion traffic generator (WS3
in Figure 3) generated random congestion traffic uniformly distributed between zero and a
maximum specified by the tester. The aggregate traffic presented to the router in this figure
was a combination of the traffic from these two sources. For example, if a maximum of 100%
was specified for a 2 Mbps test, this meant that no congestion traffic was generated. If a
maximum of 200% was specified, this meant that the congestion source was generating
random traffic uniformly distributed between 0 and 2 Mbps.

From Figure 14, it appears as though TCP starts out performing slightly better than TP at
no congestion (which is consistent with corruption test results when congestion control is
enabled for TP), then the performance of TCP crosses over and remains slightly worse than
TP as the congestion level increases. Some of this behavior can be explained by the
differences in the congestion control algorithms used by the two protocols, which is discussed
more in Appendix A. The TCP implementation used for this test employs the standard TCP
congestion control algorithm (Van Jacobson), while SCPS TP uses a modified version of
TCP-Vegas. Also, it should be noted that given the 95% confidence intervals for this data,

26

some of this trend may not be statistically significant, although it is consistent for congestion
levels higher than 150% in the figure.

The results for 512 byte packets are shown in Figure 15. Here, TP starts out better than
TCP with no congestion (again, consistent with corruption testing), then crosses over the
TCP performance to become slightly worse at higher congestion levels. Again, it is not clear
that this is statistically significant, given the large variance in the data. This large variance was
partly due to the way the congestion traffic was generated. In some cases, the test duration
may not have been long enough to allow the traffic generator to step through enough values
to make the distribution look uniform.

0

10

20

30

40

50

60

70

80

90

100

100 110 120 130 140 150 160 170 180 190 200

Congestion (random variable): max % of link capacity

TP

TCP

Figure 15. 2 Mbps Congestion Throughput (4 Mbyte file, 512 byte packets)

The results for 50 byte packets are shown in Figure 16. Here, TP crosses over the TCP
performance a number of times, but it is not likely that this is statistically significant, given the
large variance in the data. Taking into account this variance, the performance of each
protocol seems very similar.

27

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

100 110 120 130 140 150 160 170 180 190 200

Congestion (random variable): max % of link capacity

TP

TCP

Figure 16. 2 Mbps Congestion Throughput (.5 Mbyte file, 50 byte packets)

3.1.5.4 Congestion Testing - Low Data Rate
The low data rate selected for these tests was 9600 bps [1]. At this data rate, the

congestion performance of SCPS TP was compared to that of TCP at two packet sizes.
Figure 17 indicates the relative throughput performance of these two protocols when
attempting to send a medium size file (.5 Mbyte) over this 9600 bps geosynchronous link
using 512 byte packets. As in previous figures, throughput is expressed as a percentage of the
maximum link capacity available. Therefore, 100% throughput is equivalent to 9600 bps.

28

As seen in Figure 17, the performance of these two protocols in the congestion
environment under these conditions is nearly identical. Furthermore, the variance in the data
was almost nonexistent.

0

10

20

30

40

50

60

70

80

90

100

100 110 120 130 140 150 160 170 180 190 200

Congestion (random variable): max % of link capacity

TP

TCP

Figure 17. 9600 bps Congestion Throughput (.5 Mbyte file, 512 byte packets)

29

The results for 50 byte packets are shown in Figure 18. TP indicates a slight advantage
over TCP for this packet size. Data was difficult to obtain for TCP beyond 150% congestion
and for TP beyond 175% congestion because the connection would time out before the data
transfer could be completed.

0

10

20

30

40

50

60

70

80

90

100

100 110 120 130 140 150 160 170 180 190 200

Congestion (random variable): max % of link capacity

TP

TCP

Figure 18. 9600 bps Congestion Throughput (.5 Mbyte file, 50 byte packets)

31

3.2 File Handling Protocol
SCPS FP testing was the second highest priority in FY97 in support of potential

SATCOM users. SCPS FP may be desirable to a SATCOM user if that user has a need to
transfer files or individual records of files and may want the protocol to automatically resume
the transfer after it is interrupted. Because not all SATCOM users will have these needs, this
FP functionality was partially demonstrated; however, detailed performance testing with
comparison to commercial FTP was not conducted.

3.2.1 Protocol Requirements

Table 3 identifies those functional requirements of FP that were planned to be tested in the
SATCOM environment. These are derived from [3].

Table 3. SCPS File Handling Protocol Requirements

Ref
Para

Requirement Type of
Test

F.2 Operations on file records. N/A

F.2.2 Shall provide the capability to insert a record or set of records into any location in
a file.

F

F.2.3 Shall provide the capability replace any record or set of records within a file. F

F.2.4 Shall provide the capability to delete any record or set of records within a file. F

F.3 Shall provide the capability for either of two end systems to send and receive a
complete file.

F

F.5 User initiated interrupt and abort. N/A

F.5.1 Shall provide the capability for the user to cause an interrupt of a file transfer after
the start of the transfer.

F

F.5.2 Shall provide the capability for a user to terminate a file transfer after the start of
the transfer.

F

F.6 System-detected interrupt notification. N/A

F.6.1 Shall recognize a notification that the communications supporting a file transfer
has been interrupted.

F

F.7 Resumption after interrupt N/A

F.7.1 Shall provide the capability to manually resume a file transfer from the point of
interruption.

F

F.7.2 Shall provide the capability to automatically resume a file transfer from the point
of interruption.

F

F=functional test, P=performance test

3.2.2 General Experiment Design

All FP functional testing was conducted under the corruption environment identified for
TP testing. FP was an application running on top of TP, which provided a transport service
for these tests. For each experiment, files and records of files to be sent across the satellite
link to the other end application were generated with a utility program. In order to conserve

32

test resources, a selected portion of basic FP functions (those identified in Table 3) were
verified under a single link condition (no bit errors) and in the forward direction only. These
basic functions are believed to be of benefit to potential SATCOM users compared to the
capabilities of commercially available FTP.

3.2.3 Test Method

The specific network configuration used for FP functional testing is identified in Figure 3.
This is identical to the configuration for TP testing, except FP also resided at the two end
workstations (WS1 and WS2). During these tests, WS3 remained connected to the LAN, but
did not generate any congestion traffic. Tests were executed and data was collected both
locally at Rome Laboratory and remotely from Reston, VA as indicated in Figure 3.

For basic file transfer and record update operations, the test was initiated by requesting
the operation at the FP client on WS1. On record updates, the functionality was
demonstrated with records of 512 bytes, then with records of 2, 8, and 32 kbytes. On file
transfers, the functionality was demonstrated with files of 8, 32, 256, and 1024 kbytes.

For manual and automatic file interrupt operations, a large file transfer was initiated from
the FP client on WS1 over a low data rate link. For the manual function, the intent was to
demonstrate that the transfer could be intentionally interrupted and restarted from the FP
client. For the automatic function, the intent was to simulate a link outage by disabling the
physical layer modem, then demonstrate that FP automatically completed the file transfer
when the modem was enabled.

3.2.4 Data Reduction

The data reduction was minimal for this test. At the end of each file or record transfer, we
simply verified that the application acknowledged completion of the transfer, then we used a
utility to compare the file received to the file transmitted to verify they were identical.

3.2.5 Summary of Results

All record update and file transfer operations were completed successfully.

Manual interrupt/restart and automatic interrupt/restart functions were never completed
successfully. FP was implemented through a socket interface for this testing. A problem was
discovered with this interface in the course of this testing, but we did not have sufficient
resources on this test program to resolve the problem. As a result, we did not complete the
demonstration of these features.

33

3.3 Network Protocol
Historically, military SATCOM has been used to connect end users who are collocated

with terminals and not connected to networks. However, a number of scenarios have been
identified in which it is desirable to connect an existing ground network (possibly TCP/IP-
based) to a remote section of a network through a SATCOM link, as depicted in Figure 2.

Many near-term potential SATCOM users may not be willing to implement SCPS
protocols at all the ground nodes in Figure 2. One way to support those users without much
impact to existing systems is to implement SCPS (or a subset of SCPS) only at the end points
of the network and at the two nodes connected to the satellite link. In this scenario, SCPS
(TP and NP at a minimum) is installed at the end node in each network and is encapsulated by
IP. The commercial IP then routes information through the ground network until it reaches
the satellite link. Here, TP would interface with NP to deal with issues pertaining to the
physical satellite link. In this way, true end-end reliability is provided via SCPS without
having to change existing intermediate ground nodes in the network. The test configuration
that supported this environment is identified in Figure 19.

As discussed earlier, SCPS TP testing was the highest priority in FY97 because it provides
the largest potential benefit in support of near-term SATCOM users. However, NP can also
provide benefit in the environment just described, mostly through its capability to signal to TP
the presence of both corruption and congestion and the capability to assign precedence to
individual network packets. Therefore, tests were conducted in FY97 to demonstrate these
two functions of NP in the congestion and corruption environments.

Reston or
Col Springs

Remote
Test

Control

Ethernet LAN

SOURCE
END

Congestion
Traffic

Generator

Traffic
Monitor

WS1 WS3 WS4

Rome Labs
Network #1

DESTINATION
END

WS2

Rome Labs
Network #2

ACTS Satellite

Terminal #1

Test
Controller

WS7

RLCN
Gateway

Rome Laboratory Corporate Network

IP

NP Router

WS5
NP

RS-449
RS-232

[TP/NP]IP
or

[SCPS]IP
and
Test

Drivers

IP

NP Router

WS6NP

RS-449
RS-232

[TP/NP]IP
or

[SCPS]IP
and
Test

Drivers

Figure 19. Test Configuration 2

34

3.3.1 Protocol Requirements

Table 4 identifies those functional requirements of NP that were tested in the SATCOM
environment. These are derived from [3].

Table 4. SCPS Network Protocol Requirements

Ref
Para

Requirement Type of
Testing

N.4 Separate reporting for congestion and corruption. N/A

N.4.1 Shall be able to detect and differentiate between network congestion and network
data corruption.

F

N.4.2 Shall be able to report each of these two conditions to the transport protocol in a
way that differentiates between them.

F

N.4.3 Shall be able to manage and possibly discard data in response to congestion. F

N.4.4 Shall be able to discard data in order from lowest to highest precedence. F

N.5 Support for precedence handling. N/A

N.5.1 Shall be able to recognize the precedence level specified by the application. F

N.5.2 Shall be able to provide a default precedence level for those packets that require
one.

F

N.5.3 Shall be able to assign the proper precedence level to each outgoing packet that
requires one.

F

N.5.4 Shall be able to recognize the precedence level associated with an incoming
packet.

F

N.5.5 Shall be able to process incoming packets in accordance with their assigned
precedence level.

F

N.5.6 Shall provide the capability for system configuration personnel to set the default
precedence level for a system.

F

F=functional test, P=performance test

3.3.2 General Experiment Design

All NP functional testing was conducted under separate corruption and congestion
environments. First, the ability of NP to signal corruption to TP was tested on a corrupted
satellite link without ground network congestion. Second, the ability of NP to signal
congestion to TP was tested in a congested ground network without satellite link corruption.
Finally, the ability of NP to properly deal with various levels of precedence was demonstrated
in the presence of ground network congestion.

3.3.3 Test Method

The specific network configuration for NP functional testing, which is identified in Figure
19, is similar to the configuration for TP testing. The primary difference is that NP also
resided at the two end workstations and two additional workstations were needed to act as
NP routers at the satellite terminals.

35

For corruption environment tests, WS1 hosted [TP/NP]IP and TP test drivers associated
with the source end of the connection. WS2 hosted [TP/NP]IP and TP test drivers associated
with the destination end of the connection. During these tests, WS3 did not generate any
congestion traffic. WS5 and WS6 hosted IP to interact with the Ethernet on each side of the
satellite link. These workstations also hosted NP which interacted with the modem and
satellite terminal through a high speed RS-449 serial interface.

To demonstrate the function of NP signaling corruption to TP, the link BER was set to
various levels above 1x10-6, TP connections were initiated, and it was verified that TP was
signaled to respond to corruption. For additional engineering information, throughput and
delay were measured similarly to TP performance testing.

For congestion environment tests, WS3 generated traffic to produce various levels of
congestion to the NP router at WS5. To demonstrate the function of NP signaling congestion
to TP, the link BER was set to less than 1x10-8, TP connections were initiated, and it was
verified that TP was signaled to respond to congestion. Delay and throughput were also
measured.

To demonstrate the function of NP packet precedence, separate TP connections were
established and NP packets were assigned different priority for each connection. Delay and
throughput were measured to verify that packets with highest priority were delivered with
minimum delay while packets with lowest priority were delivered with the longest delays.

3.3.4 Data Reduction

For the signaling tests, it was directly verified that TP was set to respond to either
congestion or corruption, and no additional data reduction was necessary. For the packet
precedence testing, data was collected by WS4 (see Figure 19) similar to TP testing, and test
drivers performed initial data reduction in order to report throughput and delay.

3.3.5 Summary of Results

The function of NP signaling to TP in response to corruption or congestion was
successfully demonstrated. The function of NP packet precedence was also successfully
demonstrated by showing that the lowest priority packets always resulted in the longest
delays, while the highest priority packets always resulted in the shortest end-to-end delays.

37

Section 4

Overall Test Summary

4.1 Transport Protocol
The performance of SCPS TP relative to TCP was evaluated separately in this test effort

for link corruption and network congestion environments.

4.1.1 Corruption Environment

In the corruption environment with congestion control turned off, SCPS-TP always
outperforms TCP over large bandwidth-delay product links (tested here on a 2 Mbps
transponder in geosynchronous orbit). Even with no bit errors on the link, TP performs better
than TCP due mostly to the slow-start congestion algorithm used with TCP. This
performance improvement is significant even for relatively large packets, but it becomes
substantial for smaller packets. And, the performance gains summarized herein would be
much greater if TP is compared to a version of TCP that does not implement the window
scaling option. As the BER on the link increases, the performance improvement of TP
relative to TCP in this environment also increases (even for large packets) due mostly to TP’s
ability to respond to bit errors as corruption, not congestion. Even when the congestion
control algorithm for TP is activated, TP still outperforms TCP in all cases except for when
large packets are being transmitted and there are no bit errors on the link. For these
conditions, TCP performs only marginally better than TP due to the differences in their
congestion control algorithms.

When the data rate on the link is reduced substantially (9600 bps in our case), the
performance gains of TP relative to TCP are not substantial. For larger file sizes and packets,
the performance is nearly identical at a low BER. As the link BER increases, TP has a
reasonable advantage over TCP. However, for the typical modulation and coding used on
military SATCOM links, this performance gain can be neutralized by a small increase (less
than 0.5 dB) in signal-to-noise ratio on the physical link. The relative performance of TP
compared to TCP at this data rate is similar for small files and packets, except that TP has a
slight advantage over TCP even at a low BER.

4.1.2 Congestion Environment

In the congestion environment, the current implementation of SCPS TP performs similar
to TCP at the high data rate regardless of file or packet size. TCP may have a slight
advantage at very low congestion levels due to the differences in the congestion control
algorithms, but this seems to get reversed at higher levels of congestion.

38

At the lower data rate, TP and TCP appear to perform nearly identical for larger packet
sizes. When a smaller packet size is used, TP appears to have a slight advantage over TCP at
all levels of congestion.

4.2 File Handling Protocol
All record update and file transfer operations were successfully demonstrated, although

manual interrupt/restart and automatic interrupt/restart functions were never completed. A
problem was discovered with the implementation of the “sockets” programming interface in
the course of this testing, and we did not have sufficient resources on this test program to
resolve the problem.

4.3 Network Protocol
The function of NP signaling to TP in response to corruption or congestion was

successfully demonstrated. The function of NP packet precedence was also successfully
demonstrated by showing that the lowest priority packets always resulted in the longest
delays, while the highest priority packets always resulted in the shortest end-to-end delays.

4.4 Security Protocol
The intent of this test effort was to functionally demonstrate a subset of SCPS SP features.

However, sufficient resources did not exist to enable us to conduct these tests.

39

Section 5

Conclusions

This test program was implemented in order to show the utility of SCPS to existing and
near-term DOD SATCOM applications. One of the biggest potential benefits of SCPS in
these near-term scenarios is provided by TP. The use of this protocol can result in reduced
end-to-end delays and increased throughput on corrupted links (SATCOM, in general) with
large bandwidth-delay products. When the link data rate or the propagation delay is small, the
performance gains are marginal. This has implications for DOD TT&C links as well because
they tend to be lower data rate links. However, we can expect data rates for TT&C links to
increase in the future as the demand for more capacity and more services increases. From this
and previous test efforts, we know that significant improvements in throughput are obtainable
using SCPS-TP on transponded geosynchronous links starting at data rates somewhere
between 10 kbps and 200 kbps. Given the limited data we have, it is difficult to say at what
point the performance gain is significant, and this will depend on the requirements of each
user. Further testing and simulation should be conducted in conjunction with a more
comprehensive assessment of potential user requirements.

SCPS FP can benefit those near-term SATCOM users who need to transfer files or
individual records of files. As demonstrated in this test program, the ability to update records
instead of entire files can be of great benefit in resource-constrained environments (for
example, a low data rate link with a short access time). Although not successfully
demonstrated in this test program, the ability to automatically restart a file transfer after it is
interrupted (due to a link outage or other interruption in service) can be a significant benefit to
all DOD data transfer applications. Within the constraints of each potential application, future
users should consider implementing SCPS within the kernel of the operating system to avoid
some of the difficulties encountered in this test program.

SCPS NP can benefit some near-term SATCOM users (depending on the scenario) by
providing the capability to signal the presence of corruption or congestion to the transport
layer. Probably the most significant benefit for the near-term SATCOM users is the ability to
enforce packet precedence, which allows higher priority traffic to get through a congested
network.

Near-term SATCOM users can also benefit from the end-to-end security services provided
by SCPS SP. None of these services were demonstrated in this test program due to limited
project resources.

SMC, the DOD, NASA, and ISO should continue to seek out near-term applications for
SCPS as well as far-term ones. Although the FY97 SCPS DOD test program focused on
near-term SATCOM applications, we should not lose sight of potential future applications of

40

SCPS to DOD space operations and to other potential applications, such as tactical
communications. SMC is currently engaged in a study, with support from MITRE, to identify
programs and classes of programs that can be expected to benefit the most (technically) from
implementing some or all of the SCPS protocols.

There is also a benefit, although sometimes less tangible, of standardization.
Standardization has the potential for cost savings due of commonality among systems, but this
potential is not always realized. In addition, standardization can promote interoperability,
which more often increases capability and sometimes reduces cost also. The four SCPS
protocols are currently in process as formal military standards and as ISO standards. In
addition, SCPS has been added to the current version of the Joint Technical Architecture
(JTA).

More information on SCPS can be obtain at the following web site:
http://www.scps.org/scps. All of the SCPS documentation is available at this site, as well as
points of contact and instructions on how to obtain a copy of the reference implementation
that was used in this test program.

41

List of References

1. Muhonen, J., Space Communications Protocol Standards (SCPS) FY97 DOD Test
Plan, MITRE MTR 97B0000019, April 1997.

2. Muhonen, J., Space Communications Protocol Standards (SCPS) FY97 Test
Procedures, MITRE MTR 97B0000050, September 1997.

3. The Joint NASA/DOD Space Communications Protocol Standards Technical Working
Group, Recommended Development of Interoperable Data Communications Standards
for Dual-Use by US Civil and Military Space Projects, DOD and NASA Jet Propulsion
Laboratory, September 1993.

4. Brakmo, L., S. O’Malley, L. Peterson, TCP Vegas: New Techniques for Congestion
Detection and Avoidance, Proceedings of ACM SIGCOMM 94, 31 August-2
September 1994, University College London, London, UK.

5. Brakmo, L. and L. Peterson, TCP Vegas: End to End Congestion Avoidance on a
Global Internet, IEEE Journal on Selected Areas in Communication, Volume 13,
Number 8, October 1995, pp 1465-1480.

6. Ahn, J. et al., Evaluation of TCP Vegas: Emulation and Experiment, Proceedings of
ACM SIGCOMM 95, 28 August - 1 September 1995, Cambridge, MA.

7. Allman, M. et al., TCP Performance over Satellite Links, Proceedings of the 5th
International Conference on Telecommunication Systems: Modeling and Analysis, 20-
23 March 1997, Nashville, TN, pp 456-462.

8. Bruyeron, R., and B. Hemon, Experimentations with TCP Selective Acknowledgment,
ftp://irl.cs.ucla.edu/papers/sack_exp.ps.gz

9. Fall, K., and S. Floyd, Simulation-based Comparisons of Tahoe, Reno, and SACK TCP,
Computer Communication Review, Volume 26, Number 3, July 1996, pp 5-21.

10. Mathis, M. and J. Mahdavi, Forward Acknowledgment: Refining TCP Congestion
Control, Computer Communication Review, Volume 26, Number 4, October 1996, pp
281-291.

11. Jacobson, V., Congestion Avoidance and Control, Proceedings of SIGCOMM ’88, 16-
19 August 1988, Stanford, CA, pp 314-329.

12. Jacobson, V, Modified TCP Congestion Avoidance Algorithm, end2end-interest mailing
list, 30 April, 1990. Ftp://ftp.isi.edu/end2end/end2end-interest-1990.mail

43

Appendix A

Detailed Analysis of Selected Transport Test Results

Robert C. Durst

45

Detailed Analysis of Selected Transport Test Results

In this appendix, we examine the details of the transport test results that are presented in
summary in the body of the document. The purpose of this appendix is to examine how TCP
and SCPS-TP work a) under nominal conditions, b) under conditions of congestion, and c)
under conditions in which data corruption is present. We will examine selected test runs in
detail to understand how TCP’s mechanisms work in these environments, and to compare
TCP’s to corresponding mechanisms in the TP.

A.1 Nominal Case Behavior
This section examines the behavior of TCP and TP during a 2,000,000 bps test in which

neither congestion nor data corruption are present.

A.1.1 TCP Behavior

TCP behavior has been widely discussed in the literature, and its behavior over satellite
links has received some attention [7,8]. In this section, we will discuss TCP’s behavior over
the ACTS satellite, when operating in the configuration shown in Figure 3 (from the body of
this report).

In particular, we wish to examine TCP’s slow start behavior, the mechanism that TCP
uses to gradually increase its transmission rate while determining the capacity of a
communication path. We will examine the effects of buffer sizes and “Ack clocking” on slow
start in our examination.

To begin with, slow start is a behavior that is invoked at the beginning of a TCP
connection (and at certain other times during the connection). Slow start allows the TCP
connection to submit a small amount of data to the network initially, then to steadily increase
the amount of data submitted to the network every round trip time. The rate of increase is
exponential, theoretically at a rate of s N= 2 , where s is the number of TCP segments sent in a
round trip time, and N is the number of round trips since the connection was established. In
fact, most TCP connections do not increase their transmission rate quite this quickly, for
reasons that we will discuss later. The value s, the number of segments sent in a round trip
time, times the size of a data segment, in bytes, is known as the congestion window. This is a
limit on the amount of data that TCP may have outstanding during a round trip, and therefore
constrains the instantaneous throughput of a connection.

Slow start is important in a general networking environment because it allows resources
(such as buffer memory) to be allocated along the communication path in a controlled manner.
Further, it allows TCP to relatively quickly determine the capacity of the network at a given
point in time. Slow start is a required element of standard TCP, and its behavior has special

46

significance to satellite users. Note, in the equation above, that we discuss slow start in terms
of segments per round-trip time. These units are important to satellite users for two reasons.

First, TCP connections that follow communication paths that include a satellite hop
experience round trip times that tend to be higher than those of terrestrial-only paths. This
means that TCP connections operating over satellite channels will increase their congestion
windows more slowly than those utilizing only terrestrial paths. More importantly, if the two
are contending for buffer resources in a router, the more “agile” terrestrial connection will
consume those resources more quickly than the satellite connection.

Second, the segments portion of the units is important to satellite users. For a given
channel capacity and round trip time, a connection using a larger segment (packet) size will
require fewer round trip times to accelerate to the channel capacity than a connection using a
smaller segment size. However, large segments can be more prone to bit-errors than small
segments. Hence, the satellite user may be restricted to smaller segment sizes than the
terrestrial user because of the error conditions on the satellite link. (Note, though, that in
Figures 4 and 6 that at a bit-error rate of 1x10-6, the throughput for 1400-byte segments with
TCP was significantly higher than that for 512-byte segments.)

With this introduction to TCP slow start in mind, examine Figure A-1. It is a plot of TCP
sequence numbers (divided by 1024) that are transmitted as a function of elapsed time. This
shows the progress of a TCP data transfer. (Recall that TCP uses byte count as its sequence
numbering mechanism. This means that the y-axis of the graph can be viewed as an indication
of kilobytes transmitted at a particular point in time.) Note that in the first seven seconds of
the run, we see behavior that looks consistent with an exponential increase in transmission
rate, as we would expect if the connection were behaving according to the slow start
exponential growth equation given above.

However, after seven seconds, the curve becomes quite linear, and remains so for the
remainder of the session. Why is this so? This is so because the amount of data that TCP can
transmit is limited by more than just the current size of the congestion window. It is also
limited by the capacity of the sender’s buffers and by the capacity of the receiver’s buffers.
The sender’s buffer space is allocated locally, and is known to TCP. The receiver’s buffer
space is called the advertised window, because it is “advertised” by the receiver in the window
field of the TCP header. It is a measure of the buffer space that the receiver has allocated to
store data from the sender, and the sender may not have more data outstanding than is
permitted by the receiver’s advertised window. Additionally, the sender may not send data
that it cannot store for retransmission, so the sender’s buffer space also places a limit on the
amount of data that can be outstanding. In the absence of loss, these two buffers define the
upper limit on the amount of data that can be outstanding in one round trip time. A round trip
time is used as the standard time quantum because that is the amount of time that is required
to send the data to the receiver and for the receiver to acknowledge it. In Figure A-1, the
curve becomes linear at approximately seven seconds because the sender’s buffers reach

47

capacity. At this point, new data can only be submitted to the network when old data is
acknowledged. The rate of acknowledgment is constrained by the capacity of the network
(since the data must be received to be acknowledged), so the transmission rate achieves
equilibrium. Note that once the congestion window exceeds the smaller of the send and
receive buffer sizes, the transmission rate ceases to increase.

0

500

1000

1500

2000

2500

3000

3500

4000

0 5 10 15 20 25

Time (seconds)

S
eq

ue
nc

e
N

um
be

r/1
02

4

Figure A-1. TCP Sequence Numbers Versus Time Trace

Now consider Figure A-2. It shows a very detailed view of the first five seconds of the
TCP connection of Figure A-1. In this graph, both data segments and acknowledgment
segments are shown. Data segments are shown as crosses, while acknowledgment segments
are shown as dashes. From this examination, we will discuss three things:

1. How the slow start algorithm is put into effect.

2. What “Ack clocking” is, and what it does.

3. What “Delayed acknowledgment” is, and what it does.

48

The slow start algorithm is quite simple to implement. For every acknowledgment
received, the value of the congestion window is incremented by one segment. This allows the
segment(s) being acknowledged to be replaced, plus one additional segment to be sent. If
every segment is acknowledged, then each segment sent results in two more segments being
permitted into the network, resulting in the 2N growth in the congestion window mentioned
earlier.

The practice of using the receipt of acknowledgments (and their effect on the congestion
window) to permit transmission of new data is a phenomenon called “Ack clocking”, because
the acknowledgments act as a trigger, or a “clock” for the transmission of new data. Look at
Figure A-2, at approximately .9 seconds into the run. The cross indicates the transmission of
the first data packet of the connection (the cross at time zero is the packet that establishes the
connection, and the Ack at .9 completes the connection establishment phase, permitting the
initial transmission of data). At time = .9, the congestion window is one segment (its initial
value), and the sender transmits a segment, then waits for it to be acknowledged. At time =
1.5, the acknowledgment for that segment arrives at the sender, which causes the sender to
increase its congestion window by one segment, to two segments. These two segments are
sent immediately, and the acknowledgment for these segments arrives at time = 2.1. Note that
a single acknowledgment arrives, not one for each segment. This is because most TCP
implementations acknowledge every other data segment, in order to use less acknowledgment
channel capacity. Note that the single acknowledgment means that only three segments, not
four, are sent at time = 2.1. At time = 2.6 and time = 2.8, we see another interesting
phenomenon: Delayed acknowledgments. When the first two segments that were sent at time
2.1 arrive, the receiver sends an acknowledgment immediately, which arrives at time = 2.6.
However, this TCP implementation attempts to acknowledge every other segment, so the
third segment arriving is not acknowledged immediately. If data were flowing from the
receiver to the sender, the acknowledgment would travel on the next outgoing segment (data
packets can carry acknowledgment information in TCP). However, no data is flowing from
the receiver to the sender. In order to prevent the third segment from time = 2.1 from going
unacknowledged indefinitely, TCP’s are required to not delay acknowledgments for more than
0.5 seconds. This implementation of TCP delays acknowledgments for 200 ms, and hence the
acknowledgment for the third segment arrives at time = 2.8. Note that the three segments
that are sent at time = 2.1 result in five segments being sent between times 2.6 and 2.8.

49

0

20

40

60

80

100

120

0 1 2 3 4 5

Time (seconds)

S
eq

ue
nc

e
N

um
be

r/1
02

4

Data

Acks

Figure A-2. TCP Slow Start Phase: Data and Acknowledgments

This Ack clocking behavior reduces burstiness of transmissions, as we see in the
subsequent round trips, where the transmission of data segments becomes more and more
evenly spread across the round trip time. Ack clocking is a remarkably effective mechanism
for pacing the transmission of data segments during a connection. However, it depends on
enough channel capacity on the return channel to be able to send a steady stream of
acknowledgments. If the data rate on the return channel restricts the acknowledgment traffic,
the data channel is affected, since data cannot be sent without acknowledgments to “clock” it
out. If the TCP implementation is modified to send fewer acknowledgments (fewer than one
for every other data segment), the performance of slow start is adversely affected, since the
congestion window grows by only one segment for every acknowledgment received. Some
commercial satellite service providers have considered discarding queued acknowledgments
on low-bandwidth channels (forwarding only the one with the highest acknowledgment
number), but this destroys the self-clocking behavior of TCP, resulting in very poor
performance.

50

0

500000

1000000

1500000

2000000

2500000

0 5 10 15 20 25

Time (seconds)

D
at

a
ra

te
 (

bp
s)

Figure A-3. TCP Transmission Rate versus Time (No errors, No congestion)

Figure A-3 shows the data transmission rate calculated at half-second intervals throughout
the duration of the connection. The effect of exponential growth of the congestion window is
easily seen in the exponential growth of the transmission rate. Note that the capacity of the
channel is 2,000,000 bps, and that at time = 6.5 seconds, the data rate is well over that
capacity. What prevents data loss in this case? The combined effect of the sender’s limited
buffer capacity and large buffers in the router (CISCO 4000 Router #1, in Figure 3 of the
body of the document). The router is forwarding packets at 2,000,000 bps. The arrival rate
exceeds that value, and a queue builds. If the buffer space at the sender (or receiver) were not
limited, subsequent increases in the congestion window (and the rate of transmission) would
result in the router’s buffers overflowing. However, the sender’s limited buffer capacity
prevents continued acceleration of the transmission rate, and the steady pacing of data out of
the router results in a stream of acknowledgments that result in data subsequently being
clocked out of the sender at an appropriate rate. At time = 5.5 seconds, the round-trip time
(the time between the transmission of a data packet and the receipt of its acknowledgment)
was approximately 520 milliseconds. By time = 7.46 seconds, the round trip time had
increased to 730 milliseconds. This increase in round trip time is due to queuing delays at the

51

router. The round trip time remains at approximately 710 milliseconds for the remainder of
the connection, indicating that the queue at the router persists for the duration of the
connection. This, in and of itself, is not particularly significant. However, increased round
trip times result in longer time-out values, in the event of a retransmission time-out. More
importantly, if a connection consumes router buffer space (approximately 50,000 bytes) for
the duration of its connection, that buffer space is not available to absorb the transient bursts
of data from other connections. (Readers should note that the data rates shown in this and
similar graphs are calculated in terms of user data only – no headers are included in the data
rate calculation. As a result, the numbers appear to be lower than the maximum capacity of
the network. The difference is primarily the portion of network capacity consumed by
headers.)

A.1.2 SCPS-TP Performance

The SCPS Transport Protocol is an implementation of the TCP and UDP protocols, and
includes several extensions to TCP. Of particular interest in this section are SCPS-TP’s
adaptation of the TCP-Vegas congestion control mechanism and SCPS-TP’s rate control
implementation.

The essence of TCP-Vegas’s congestion control scheme is that the protocol monitors
changes in the throughput once per round trip, and adjusts the size of the congestion window
accordingly. TCP Vegas has a version of slow start that behaves in a similar fashion to the
congestion control algorithm that standard TCP uses, but with a significant difference. While,
in theory, TCP doubles its congestion window every round trip while in slow start, TCP-
Vegas doubles its congestion window every other round trip. The reason for this is to
measure the effect on the network of the traffic at a particular congestion window level before
further increasing that level. This is a two-edged sword in a high bandwidth-delay product
and high delay environment. Firstly, it theoretically takes TCP-Vegas twice as long as TCP to
open its congestion window in slow start. (As we saw in the previous section, theory and
practice differ - since TCP does not acknowledge every packet, but rather every other packet,
its opening of the congestion window in slow start is slower than the theoretical value.) On
the other hand, by opening its congestion window more slowly than TCP, TCP-Vegas has the
ability to determine whether its offered load is causing queuing in the network (as evidenced
by a reduction in throughput).

52

0

500

1000

1500

2000

2500

3000

3500

4000

0 5 10 15 20 25

Time (seconds)

S
eq

ue
nc

e
N

um
be

r/1
02

4

Figure A-4. SCPS-TP Sequence Number Versus Time Trace

TCP-Vegas monitors the round trip times and uses those times to estimate the
connection’s throughput once per round trip time. Decreases in throughput are interpreted as
queuing in the network. Once TCP-Vegas detects a certain level of queuing, it concludes that
the network is saturated, and does not increase its offered load. In an environment in which
the congestion windows are large and the delays are long, this can prevent buffer overflows
and the resulting delays due to retransmission.

When TCP-Vegas detects queuing in the network, it exits slow start and begins its “linear
mode” (or congestion avoidance) behavior. In this mode, it samples the throughput once per
round trip time, and either increases the congestion window by one segment, leaves it
unchanged, or decreases it by one segment. This is in contrast to TCP’s behavior of
continuing to increase the congestion window until a loss is experienced.

Consider Figure A-4, a sequence number versus time trace for SCPS-TP in comparison to
the TCP trace shown in Figure A-1. The appearance of the two traces are generally similar.
However, note that while the curve in Figure A-1 “goes linear” at about 7 seconds, the curve
for SCPS-TP does not become linear until approximately 8.5 seconds. The difference is that

53

the SCPS-TP’s TCP-Vegas congestion control algorithm is growing its congestion window by
a factor of two every other round trip. The slope of the linear portion of the graph is the same
as in Figure A-1, indicating that the “terminal velocity” of the two connections is the same.
However, the limiting factor for the SCPS-TP connection is not the availability of buffer
space. Rather, the TCP-Vegas algorithm will limit the transmission rate, and it is augmented
in this case by the SCPS-TP’s rate control algorithm, which prevented the connection from
exceeding 2,000,000 bps. We will discuss the rate control algorithm later in this section.

Let us examine Figure A-5, which is a detail of the first six seconds of the connection
shown in Figure A-4. As before, this graph shows the sequence numbers shown in outgoing
data segments and in incoming acknowledgments. Note that at time = .5 seconds, the first
data segment is sent, and the acknowledgment for it is received at time = 1.1 seconds. Unlike
the TCP trace in Figure A-2, the SCPS-TP’s TCP-Vegas algorithm does not submit two
segments to the network in response to this acknowledgment. Rather, it submits a single
segment again and measures the throughput of the connection for the round trip between 1.1
seconds and 1.6 seconds. Since the throughput (as calculated from the offered load and the
round trip time) at time 1.6 seconds is undiminished (from the throughput that would have
been seen using the offered load and the best round trip time to date on the connection), the
congestion window is doubled. Two segments are sent at time = 1.6 seconds, and
acknowledged at time = 2.2. Two more segments are sent at time = 2.2, and another
throughput measurement is taken. Since the throughput is again undiminished, the congestion
window is doubled again.

54

0

10

20

30

40

50

60

70

80

90

0 1 2 3 4 5 6

Time (seconds)

S
eq

ue
nc

e
N

um
be

r/1
02

4

Data

Acks

Figure A-5. SCPS-TP Slow-Start Phase: Data and Acknowledgments

This version of slow start continues until a queue builds in the network. At that point, the
round trip time will increase, and the throughput measurement will show a decrease in
throughput. The threshold for just how much decrease causes an exit of slow start is tunable,
but we noticed little sensitivity to it in these tests. This is probably because the SCPS-TP rate
control algorithm limited the transmission rate before a queue built in the router. In this case,
the rate control algorithm had the same effect as the limitation on buffer space did with the
TCP connection, but without the formation of a large persistent queue at the router. (The
round trip time at the beginning of the connection was .53 seconds, while it was .60 at the end

55

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

0 5 10 15 20 25

Time (seconds)

D
at

a
ra

te
 (

bp
s)

Figure A-6. SCPS-TP Data Rate versus Time (TCP Vegas Congestion Control
Enabled)

of the connection, indicating that there was a 70 millisecond, or 12-packet1, queue at the
router. We will see later that the ability to have large buffers at the end systems – on the order
of twice the bandwidth-delay product of the network, rather than equal to it, are an advantage
in the event that the link becomes corrupted (assuming that we do not overrun buffers in
intermediate routers as a result of having these larger buffers at the end systems).

1 The 12-segment estimate is derived by knowing that the data rate on the link is 2,000,000

bps and that the packet size (including headers) is approximately 1456 bytes:

packets in queue

bps

bits per byte
bytes per packet

packets_ _
. sec

_ _
_ _

.=
∗

=
0070

2000000
8

1456
12 0 .

56

The effect of the strategy of increasing the congestion window every other round trip is
dramatically shown in Figure A-6, which shows the data rate of the connection as a function
of time. Once the connection approaches the maximum rate allowed by the rate control
parameters, the data rate levels off.

0

500

1000

1500

2000

2500

3000

3500

4000

0 2 4 6 8 10 12 14 16 18

Time (seconds)

S
eq

ue
nc

e
N

um
be

r/
10

24

Figure A-7. SCPS-TP Sequence Number Versus Time Trace
(Congestion Control Disabled)

As we mentioned previously, the SCPS-TP has a rate control mechanism. The rate control
in our implementation is based on a simple “Token-Bucket” algorithm, in which a certain
amount of rate control credit (in bytes) is added to the connection’s “bucket” once per rate-
control interval. In this implementation of the SCPS-TP, the rate-control interval is 10 ms.
To effect a 2000000 bps rate control value, 2500 bytes of credit are added to the rate control
“bucket” every 10 ms. Before a packet is sent, the protocol ensures that there is sufficient

57

credit in the bucket to “cover” the packet (including headers). (To be precise, our
implementation associates the rate control bucket with a route, not a particular connection.)

This mechanism can be used independently of the TCP-Vegas congestion control
algorithm, either to enforce an apportionment of channel capacity among users, or just to
ensure that the protocol does not overrun the available resources. As mentioned in the body
of this report, in simple topologies, the use of rate control without congestion control may be
desirable. This may also be desirable in reserved-capacity situations, such as may be
configured through the use of the Resource ReserVation Protocol (RSVP [RFC 2205]),
which is not discussed in this report.

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

0 2 4 6 8 10 12 14 16 18

Time (seconds)

D
at

a
ra

te
 (

bp
s)

Figure A-8. SCPS-TP Data Rate versus Time (Congestion Control Disabled)

Figure A-7 shows the sequence number versus time trace for a SCPS-TP connection that
uses the rate control algorithm, but not congestion control. As we can see from the graph,

58

there is no exponential increase in transmission rate. The connection just sends data at the
allotted transmission rate as long as there is data to send. This is shown even more clearly in
Figure A-8, which shows the data rate of the connection versus time. It should be noted that
the use of rate control requires that the SCPS-TP be configured with the correct rate – a
setting that is too low will result in under utilization of the communication resources, while a
setting that is too high may result in queuing or even congestion collapse. In examining the
post-test data for the test shown in Figure A-8, we noticed that round trip times increased
over the course of the test, indicating that a queue formed at the router. This queue appears
to be approximately the size of that formed by TCP, and considerably larger than that formed
by TCP-Vegas.

Although there are potential problems with the use of rate control as the only means of
controlling the transmission rate on a connection, these are reasonably well understood, and
should be easily accommodated if the communication environment is sufficiently controlled.

The TCP-Vegas congestion control algorithm appears to work well in this environment.
However, as already noted, its slow start behavior is more conservative than standard TCP’s,
resulting in greater delay opening the congestion window. This is an issue that may deserve
further consideration – it may be possible to merge the slow-start behavior of standard TCP
with the throughput measurement of TCP-Vegas’s slow start. This approach is riskier, in that
the intervening routers may become seriously congested before the modified TCP-Vegas
responds. The improvement in performance may merit the risk, however.

There are other potential problems with TCP-Vegas that are not evidenced in these tests,
but merit at least some discussion. TCP-Vegas depends heavily on round-trip timing, and
from that it infers things about the state of the resources in the network. TCP-Vegas uses the
best round trip time that it has observed on a connection as the benchmark for throughput
calculations and comparisons. This leads to an obvious problem in a mobile environment:
round trip times change as a result of things other than queuing in the network. Specifically,
round trip times can change as a result of changing propagation delays. If the propagation
delays change only by a moderate amount, say 10% or less, the acceptable buffering
tolerances that may be set within TCP-Vegas may be sufficient to accommodate the changes.
The effects of this sensitivity do not, in general, affect the SATCOM environment, but are a
topic for further study in a high-data-rate mobile environment.

Changes in connectivity that result in changes in link capacity should result in
modifications in the congestion window, but are probably best accompanied by a return to
slow-start behavior. The SCPS Control Message Protocol (part of the SCPS-Network
Protocol) provides signaling of such changes for a mobile environment, but as yet the Internet
Control Message Protocol does not.

Another potential problem with TCP-Vegas, that might affect a SATCOM environment, is
the possibility that TCP-Vegas may start up when the network is already congested. In this

59

case, the best round trip observed does not indicate optimal performance. What is needed in
this case is an explicit signal of congestion – which, again, the SCPS Control Message
Protocol provides in the form of a “Source Quench” message. This capability also exists in
the Internet Control Message Protocol, but is largely unused because router manufacturers
previously did not know how to reasonably control the rate at which these messages are sent.
However, recent developments within the Internet community regarding Explicit Congestion
Notification should address this issue in the near future.

Let us turn now to a comparison of the three mechanisms discussed so far: standard TCP,
SCPS-TP with TCP-Vegas congestion control, and SCPS-TP with rate control. Figure A-9
shows such a comparison. Note that all three approaches result in the same final slope in this
sequence number versus time graph, and that the differences are only in how the connection
starts up. Note also that this is data taken in the most benign of environments – there was
neither congestion nor corruption present, and none of these connections lost a single packet.

In the subsequent sections of this Appendix, we will concentrate on the behavior of TCP
and SCPS-TP in less benign conditions. We will consider first the problems resulting from the
presence of congestion traffic, and then from the problems of data corruption.

60

0

500

1000

1500

2000

2500

3000

3500

4000

0 5 10 15 20 25

Time (seconds)

S
eq

ue
nc

e
N

um
be

r/
10

24

TP, no CC

TCP

TP with CC

Figure A-9. Comparison of TCP with TP -- With and Without Congestion Control

A.2 Congestion Performance
In 1988, congestion was recognized as a major source of performance degradation in the

Internet. [11] The current, widely-distributed mechanisms within TCP for responding to
congestion were proposed in 1988, and then revised in 1990. [11, 12] However, in today’s
SATCOM environment, congestion is considered to be less of a problem than data corruption.
As military doctrine evolves toward “coordinated operations without prior planning,” the
probability of unplanned communication (and therefore congestion) will increase. It is
therefore important to consider congestion control and its effect on satellite communication.

61

A.2.1 TCP Performance

As one would expect from the above discussion, TCP’s congestion response has proven to
be effective in terrestrial networking. It is also effective in a SATCOM environment, but less
so than in a terrestrial environment, because some elements of congestion recovery are a result
of round-trip delay. In this section, we will examine TCP’s performance in a congested
SATCOM environment.

We generated the congestion traffic using an application that randomly selected a
congestion traffic generation rate (between 0 and 1,000,000 bps, in these examples), and
generated traffic at that rate for five seconds. The application then selected a different random
number and set its rate accordingly. The purpose of the test was to examine how TCP’s
congestion control mechanisms responded to contention for router and link resources.

We will first examine TCP’s performance using a data rate versus time plot similar to the
one we introduced in Figure A-3. The graph in Figure A-10 differs from Figure A-3, in that it
has a trace showing the congestion traffic, as well as the TCP traffic. Readers should note
that during the test shown in Figure A-10, only one TCP segment was lost, at approximately t
= 23 seconds (we will examine this loss and recovery in Figures A-13 and A-14).

On first blush, we can see from Figure A-10 that TCP is, indeed, responding to congestion
in what appears to be an appropriate manner: When the congestion traffic rate goes up, TCP
reduces its transmission rate. When the congestion traffic rate goes down, TCP increases its
transmission rate. On closer examination, we see some interesting phenomena. First, recall
that the capacity of the communication channel is 2,000,000 bps. Any offered load in excess
of this will be queued at the router, and if the queue grows bigger than the router’s buffer
capacity, data will be lost (as at time = 23 seconds).

Notice the TCP traffic data point at time ≅ 5 seconds (data rate ≅ 1,100,000 bps). Prior
to this point, the increase in TCP’s rate of transmission looks consistent with the graph in
Figure A-3. However, between time = 5 and time = 7 seconds, the data rate is still increasing,
but not as quickly as before. We get an indication of the answer by examining Figure A-11,
which shows the sum of the two curves in Figure A-10. The bold line at 2,000,000 bps
indicates the capacity of the satellite link. Values above this line will cause queuing at the
router, and if sustained for too long, will cause loss.

62

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

0 5 10 15 20 25 30

Time (seconds)

D
at

a
ra

te
 (

bp
s)

TCP traffic

Congestion traffic

Figure A-10. Data rate versus time: TCP’s response to congestion

Between time ≅ 5 seconds and time ≅ 7 seconds, the TCP’s rate of transmission still
increases, but not as fast as we would expect. The reason for this is that there is other traffic
(the congestion traffic) interleaved in the router’s buffers, slowing the rate at which TCP
traffic leaves the router. This slow-down in TCP traffic results in a slow-down in the returned
acknowledgments, which, in turn, slows the growth of the congestion window. Why, then,
does the TCP rate of transmission drop dramatically between times 7 and 8.5? The answer to
this, based on examination of the packet logs, is that the sender’s buffers fill at time ≅ 7 sec.
At this point, the sender can only replace data that leaves the network, it cannot increase the
amount of data in the network (since any data that TCP sends must be buffered for
retransmission, and its retransmission buffers are full). As mentioned earlier, the presence of
the congestion traffic reduces the rate at which TCP traffic leaves the router, which reduces
the rate that acknowledgments are returned, which reduces TCP’s ability to introduce new
data to the network.

63

0

500000

1000000

1500000

2000000

2500000

3000000

0 5 10 15 20 25 30

Time (seconds)

D
at

a
ra

te
 (

bp
s)

Aggregate traffic

Figure A-11. Aggregate Data Rate for TCP and Congestion Traffic

At time ≅ 8.5 seconds, the congestion traffic drops off precipitously. The effect of this is
to allow the TCP traffic to consume the entire link, increasing the rate at which
acknowledgments are generated at the receiver. In addition, the round trip times are reduced
due to the absence of congestion traffic, so the sender’s buffer usage is reduced. This allows
the sender to continue its exponential growth of the congestion window, accounting for the
rapid increase in transmission rate between times 8.5 and 10 seconds. This acceleration and
deceleration of TCP transmission rate continues until time = 24 seconds, when TCP’s
transmission rate drops to zero. This is because a loss occurred, due (presumably) to a buffer
overflow in the router. When we examine Figure A-12, we see a period of time before the
loss during which the aggregate traffic exceeds the capacity of the outbound satellite link, but
this appears to be much smaller than the episode at time ≅ 5 seconds to time ≅ 8 seconds.
Why did the loss occur? Our hypothesis was that a persistent queue had built at the router
over the course of the communication.

Using round-trip time information from the packet logs, we attempted to estimate the
amount of buffer space in use at the router. We did this by knowing that the router’s output

64

rate was 2,000,000 bps, and making the assumption that there were no other significant
sources of queuing in the system. This is generally a reasonable assumption in our test
environment, since we determined that the destination workstation could consume data at a
rate of much greater than 2,000,000 bps. We assumed that the queuing of acknowledgments
on the return path was negligible. With this set of assumptions, we estimated the queuing
delay in the router by comparing the round trip time resulting from each incoming
acknowledgment with the best round trip time seen on the connection (when the path was
quiescent). This delay change corresponds to the time required for the router to clock out its
queue of data before the packet being timed is transmitted over the satellite link. Using the
known rate of the satellite link, we can estimate the router buffer usage. A graph of these
estimates is shown in Figure A-12.

Note that the data in Figure A-12 is in good agreement with what we see in Figure A-11.
As the aggregate traffic exceeds the capacity of the satellite link, a queue forms at the router.
What is not clear from Figure A-11 is that even when the data rate drops between times 7 and
8 seconds, the queue does not completely go to zero. It builds further at time ≅ 13, and again
at time ≅ 17, finally resulting in data loss at time ≅ 22. We see a large surge in buffer use
again at time = 24 seconds, which we will discuss as we examine the dynamics of TCP in
response to loss. The discontinuity in the graph, between time ≅ 22 and ≅ 24 is an artifact of
our means of calculating the buffer use – when there is a loss, the round trip times that we
calculate as part of our packet log are no longer valid. However, we know from the data that
the first point at time ≅ 24 indicates that the queue is essentially empty, a result of the
combination of the retransmission and the fall-off of the congestion traffic to levels sustainable
by the router without queuing.

65

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0 5 10 15 20 25 30

Tim e (se conds)

B
yt

es

Figure A-12. Estimated Router Buffer Use for TCP Congestion Test

Figure A-13 shows the sequence number versus time trace for the TCP congestion test we
have been examining. Note how the changes in slope of this curve at times ≅ 7 and 9
correspond with significant changes in buffer use at the router. Note also that as the queues
build in the router, the slope of the sequence number versus time curve flattens (between times
9 and 22). Recall that at this point in the connection, the sender’s buffers are full, limiting the
connection’s data rate. The increasing queuing at the router buffer delays data segments,
which in turn delays acknowledgments, which are required to clock out new data segments.

Now consider the curve beyond time 23 seconds. We see a cross that is below the others,
followed by a gap, a set of closely-spaced crosses, another gap, and then the transfer
continues. The cross that is below the others is a retransmission, due to a loss that appears to
have resulted from the router’s buffers exceeding their capacity. To this point, the TCP
connections we have examined have been executing an algorithm called “slow-start.” It is
now time to discuss three other algorithms of TCP congestion control: fast retransmit, fast
recovery, and congestion avoidance.

66

0

500

1000

1500

2000

2500

3000

3500

4000

0 5 10 15 20 25 30

Time (seconds)

S
eq

ue
nc

e
N

um
be

r/
10

24

Figure A-13. Sequence Number versus Time Trace for TCP Congestion Test

In Figure A-14, we “zoom in” on the area between times 22 and 26 seconds, to examine
how TCP responds to loss. There are a number of factors that will affect this response that
we should review briefly. First, satellite propagation delay (round-trip) is approximately
0.511 seconds, and the round-trip time between the source and destination hosts is
approximately 0.53 seconds (without any congestion). The data rate of the satellite channel is
2,000,000 bits per second. Therefore, the capacity of the network to carry data “in-flight”
(known as the bandwidth-delay product of the network) is given by the following equation:

bw delay
bps

bits byte
bytes× = × =

2 000 000

8
053 132 500

, ,

/
. sec ,

Knowing the capacity of the network is important, since we must configure TCP to be
able to submit at least this much data to the network in order to fully utilize the network’s

67

capacity. Therefore, we use the bandwidth-delay product as a lower bound on retransmission
buffer and receive buffer memory sizes.

We can convert this value to a count of TCP segments by dividing by the packet size
(including all headers), and we see that the size of the “pipe” (and therefore the minimum
expected size of the congestion window) is as follows:

bw delay packets
bytes

bytes packet
packets× = ≅()

,

/

132 500

1456
91

We know that we need to provision the sender and receiver with at least 91 TCP segments
of retransmission buffer storage, which at 1400 bytes of user data per segment amounts to
127,400 bytes. For reasons that will become clear later, we do not want to exceed twice that
amount, so we requested 200,000 bytes of retransmission buffer storage for the sender and for
the receiver. For reasons that remain obscure to us, the operating system did not give us the
requested 200,000 bytes for send-buffer storage, but rather, gave us approximately 168,000
bytes. This is still greater than the required level, so there was no real problem. We do not
know how much space the receiver actually allocated, but it advertised to the sender that it
had the amount that we requested. As it turns out, the mismatch between sender buffer space
and receiver buffer space led to some “interesting” results that affect TCP’s congestion
response in ways other than the developers intended.

Recall that by time = 22 seconds, the transmission rate of the connection is limited by ack
clocking, since the sender’s retransmission buffer is full and new data can only be submitted to
the network as old data is acknowledged. The connection is still in slow-start, because no
data has been lost. Because the congestion window has been growing by 1400 bytes for every
acknowledgment that has been received, it is huge by this point (approximately 1.7 million
bytes). The receiver is advertising a window of 200,200 bytes.

The TCP segment that was lost was originally transmitted at time = 22.07 seconds (we
determined this by examining the packet logs). While this segment is in transit,
acknowledgments continue to arrive. This frees send buffer space, and allows more segments
to be transmitted.

The segment transmitted at 22.07 is lost. However, the segments sent after it are not. At
time ≅ 23.06, the first of these segments arrives at the receiver. Since the segment from 22.07
has been lost, the receiving TCP perceives all segments transmitted after it to be out of order.
It saves these on an out-of-sequence queue for later use, and invokes its portion of the fast
retransmit algorithm. Rather than attempting to paraphrase the description of the fast
retransmit algorithm, here is its specification, from RFC 2001:

68

“3. Fast Retransmit

Modifications to the congestion avoidance algorithm were proposed in 1990 [3] [in this document, reference 12]. Before
describing the change, realize that TCP may generate an immediate acknowledgment (a duplicate ACK) when an out-of-order
segment is received (Section 4.2.2.21 of [RFC 1122], with a note that one reason for doing so was for the experimental fast-
retransmit algorithm). This duplicate ACK should not be delayed. The purpose of this duplicate ACK is to let the other end
know that a segment was received out of order, and to tell it what sequence number is expected.

Since TCP does not know whether a duplicate ACK is caused by a lost segment or just a reordering of segments, it waits for a
small number of duplicate ACKs to be received. It is assumed that if there is just a reordering of the segments, there will be
only one or two duplicate ACKs before the reordered segment is processed, which will then generate a new ACK. If three or
more duplicate ACKs are received in a row, it is a strong indication that a segment has been lost. TCP then performs a
retransmission of what appears to be the missing segment, without waiting for a retransmission timer to expire.”

In examining Figure A-14, we see the fast retransmit occur at time 23.34, after the receipt
of (what we can determine from examining the packet logs) three duplicate acknowledgments.
(In fact, there are four acknowledgments received with the same acknowledgment number
before the segment is retransmitted, because the first one is not a duplicate.)

Since the receiving TCP is sending a duplicate acknowledgment for each segment that is
received out-of-order, the string of duplicates received by the sending TCP continues on well
past time = 24. These duplicate acknowledgments perform a critical function in TCP’s fast
recovery algorithm. Here are two more excerpts from RFC 2001 that explain slow start and
congestion avoidance, followed by a discussion of the implementation of the congestion
avoidance, the fast retransmit and fast recovery algorithms:

Congestion avoidance and slow start are independent algorithms with different objectives. But when congestion occurs TCP
must slow down its transmission rate of packets into the network, and then invoke slow start to get things going again. In
practice they are implemented together.

Congestion avoidance and slow start require that two variables be maintained for each connection: a congestion window, cwnd,
and a slow start threshold size, ssthresh. The combined algorithm operates as follows:

1. Initialization for a given connection sets cwnd to one segment and ssthresh to 65535 bytes.

2. The TCP output routine never sends more than the minimum of cwnd and the receiver's advertised window.

3. When congestion occurs (indicated by a timeout or the reception of duplicate ACKs), one-half of the current window size
(the minimum of cwnd and the receiver's advertised window, but at least two segments) is saved in ssthresh. Additionally, if
the congestion is indicated by a timeout, cwnd is set to one segment (i.e., slow start).

4. When new data is acknowledged by the other end, increase cwnd, but the way it increases depends on whether TCP is
performing slow start or congestion avoidance.

If cwnd is less than or equal to ssthresh, TCP is in slow start; otherwise TCP is performing congestion avoidance. Slow start
continues until TCP is halfway to where it was when congestion occurred (since it recorded half of the window size that caused
the problem in step 2), and then congestion avoidance takes over.

69

3000

3100

3200

3300

3400

3500

3600

3700

22 22.5 23 23.5 24 24.5 25 25.5 26

Time (seconds)

S
eq

ue
nc

e
N

um
be

r/
10

24

Acks

Data

Slow Start

Fast Retransmit

Fast Recovery Congestion Avoidance

Figure A-14. Detail of TCP’s Recovery From Loss

Slow start has cwnd begin at one segment, and be incremented by one segment every time an ACK is received. As mentioned
earlier, this opens the window exponentially: send one segment, then two, then four, and so on. Congestion avoidance
dictates that cwnd be incremented by segsize*segsize/cwnd each time an ACK is received, where segsize is the segment size
and cwnd is maintained in bytes. This is a linear growth of cwnd, compared to slow start's exponential growth. The increase in
cwnd should be at most one segment each round-trip time (regardless how many ACKs are received in that RTT), whereas
slow start increments cwnd by the number of ACKs received in a round-trip time.

The key things to remember from this for the purposes of our discussion are: In slow-
start, the congestion window grows by one segment per acknowledgment received. After a
loss signaled by duplicate acknowledgments, the congestion window is set to half its previous
value and the connection enters congestion avoidance. In congestion avoidance, the
congestion window grows by at most one segment per round trip time, rather than one
segment per acknowledgment.

Now for the implementation excerpt:

4. Fast Recovery

After fast retransmit sends what appears to be the missing segment, congestion avoidance, but not slow start is performed.
This is the fast recovery algorithm. It is an improvement that allows high throughput under moderate congestion, especially for
large windows.

70

The reason for not performing slow start in this case is that the receipt of the duplicate ACKs tells TCP more than just a packet
has been lost. Since the receiver can only generate the duplicate ACK when another segment is received, that segment has
left the network and is in the receiver's buffer. That is, there is still data flowing between the two ends, and TCP does not want
to reduce the flow abruptly by going into slow start.

The fast retransmit and fast recovery algorithms are usually implemented together as follows.

1. When the third duplicate ACK in a row is received, set ssthresh to one-half the current congestion window, cwnd, but no
less than two segments. Retransmit the missing segment. Set cwnd to ssthresh plus 3 times the segment size. This inflates
the congestion window by the number of segments that have left the network and which the other end has cached (3).

2. Each time another duplicate ACK arrives, increment cwnd by the segment size. This inflates the congestion window for the
additional segment that has left the network. Transmit a packet, if allowed by the new value of cwnd.

3. When the next ACK arrives that acknowledges new data, set cwnd to ssthresh (the value set in step 1). This ACK should
be the acknowledgment of the retransmission from step 1, one round-trip time after the retransmission. Additionally, this ACK
should acknowledge all the intermediate segments sent between the lost packet and the receipt of the first duplicate ACK.
This step is congestion avoidance, since TCP is down to one-half the rate it was at when the packet was lost.

The second paragraph provides insight into the use of duplicate acknowledgments in fast
recovery – to maintain data flow between the end systems in the event of a loss. Further, the
final sentence of this excerpt states the goal of the congestion avoidance phase: to reduce
TCP’s data rate to one half the level it was when the loss occurred. Van Jacobson, principal
author of these algorithms, provides a stronger statement of these goals in his original
elaboration of the algorithms in 1990:

“… But, as long as the receiver's offered window is large enough (it needs to be at most
twice the bandwidth-delay product), we continue sending packets (at exactly half the rate we
were sending before the loss) even after the loss is detected so the pipe stays full at exactly the
level we want and a slow-start isn't necessary.” [12]

Now, let us examine Figure A-14 and see why neither of these goals is met in this case.
(That is, the pipe does not stay full, and the transmission rate after the loss is significantly
greater than half of the rate at the time of the loss.)

The root cause in both cases is the fact that the sender’s buffer is smaller than the
receiver’s buffer. (This should not cause problems, because the sender and receiver are not
expected to coordinate buffer sizes – the algorithms should accommodate whatever buffer
space is available, as long as the receiver properly advertises its buffer availability, and the
receiver’s buffer space is between one and two times the bandwidth-delay product of the path.
This last requirement can be very tricky to determine before the connection is established.)

First let us consider the issue of the pipe not staying full. We see from the graph that the
retransmission is sent at time = 23.34 (the exact time comes from the packet logs), and the
acknowledgment arrives at time = 24.35. In between these times, a steady stream of duplicate
acknowledgments arrives. This tells us that over the one full second (two round trip times)
that elapses between the retransmission and the acknowledgment of that retransmission, that
queued TCP data is steadily arriving at the receiver. This is not particularly surprising, since
we see from Figure A-10 that both TCP traffic and the congestion traffic are (and have been)
at relatively high rates for some time. Therefore, it is not unreasonable that the TCP traffic in

71

the router’s buffers is mixed relatively evenly with the congestion traffic. So the data that one
would expect to take just over a half-second to transmit actually takes over a second due to
time spent queued at the router. When the acknowledgment for the retransmission does
arrive, it acknowledges 168,000 bytes of data – exactly the sender’s capacity. This explains
why the sender went idle for a full second – the sender’s buffers were full. As a result, an
important aspect of fast recover, that is, the ability to keep the pipe full, is lost.

Before we examine the second issue – the transmission rate after the loss, let us examine
the burst of data that occurs just after the acknowledgment of the retransmission arrives.
Examining this transmission in detail, we see that the sender emits 72 segments in
approximately 100 milliseconds (an instantaneous transmission rate of 8.4 million bits per
second). This immediate injection of 72 segments into the network is a cause for concern,
because after an idle period of a full second, the router’s buffers could be queued from other
(terrestrial) sources, and the burst of data could easily cause loss. This did not occur in these
tests because the routers were otherwise idle. However, in a more realistic environment, this
is a concern.

Now let us examine the data rates that the connection sustained before and after the loss.
Based on the intent of the congestion avoidance algorithm, we would expect the data rate
after the loss to be half the data rate before the loss. It is not possible to directly measure the
data rates (and get a meaningful answer), because the congestion traffic conditions have
changed between the time of the retransmission and the time that data starts flowing again.
Rather, let us look at the congestion window, and see what the data rates would be, all other
things being equal. Before the loss, the connection’s receive window was 200,200 bytes, the
send buffer space was 168,000 bytes, and the congestion window was enormous, since it had
been incrementing 1400 bytes for every acknowledgment received since the beginning of the
connection. So the constraint on the sender was its own buffer size: 168,000 bytes. The
sender can, therefore, send up to 168,000 bytes per round-trip. After the loss, the receive
window is still 200,200 bytes, the send buffer space is still 168,000 bytes, but the congestion
window is reduced to one-half of the minimum of the previous congestion window value and
the receive window size. The minimum of these two numbers is the receive window
(200,200), so the congestion window is set to 100,100 bytes. The sender is now authorized
to send 100,100 bytes per round trip, rather than 168,000 bytes. This difference is 60% of the
previous value, not 50%. The fact that there is a discrepancy is more important than the size
of the discrepancy. When attempting to adjust the transmission rate of the sender, no account
was made of the fact that the sender’s buffer size might be the limiting factor to throughput.
In the case of a more significant mismatch (where the sender’s buffer size is less than half of
the receiver’s), the adjustment of the congestion window would have had no effect on
transmission rate at all. In this case, the router would continue to become congested, lose
data, and eventually the congestion window would come down to a point where it provided
an actual constraint on the transmission rate. However, it appears that a simple fix to this

72

would be to halve the minimum of the congestion window, the receiver’s advertised window,
and the send buffer size when implementing the algorithm.

One final note about the TCP congestion control algorithm. As indicated in the above
quote by Van Jacobson, the TCP receive buffer needs to be at least as large as the bandwidth-
delay product, and no more than twice the bandwidth-delay product of the connection’s path.
This is because TCP’s congestion control algorithm grows without bound – if there is no loss,
the congestion window never stops growing. After a loss, the congestion control algorithm
cuts the congestion window in half and immediately begins growing it at a rate (not to exceed)
one segment per round-trip time. Current design practice in the Internet indicates that a
“properly provisioned” router should have at least one bandwidth-delay product’s worth of
buffer space available2. Since the TCP congestion control algorithm can do nothing but grow
until there is loss, it depends upon the receive window to limit transmission. This is
unfortunate, since the receiver typically knows nothing about the bandwidth-delay product of
the network. To properly set the receive window requires manual tuning, which may not be
possible due to the application, and is difficult to do in a general-purpose manner.

A.2.2 SCPS-TP Performance

Now let us consider SCPS-TP’s performance in a congested environment. For the
purposes of comparison, we ran the congestion traffic generator with the same random
number seed as with the TCP test discussed in the previous section. The SCPS-TP
congestion control algorithm (called TCP-Vegas) does not depend on a maximum size of the
send or receive buffers (as does TCP’s standard congestion control algorithm). Knowing this,
we configured the SCPS-TP transmit and receive buffers to 400,000 bytes. We configured
SCPS-TP’s rate control parameter to a value just under 2,000,000 bps. (We set the rate
control to a value less than the channel data rate, assuming that there was some framing
overhead of which we were unaware and for which we had not previously accounted.)

We implement portions of the TCP-Vegas algorithms described in [4, 5, 6]. In particular,
we implement the TCP-Vegas version of slow start from [4, 6], not the Vegas* algorithm
from [5] (although we may experiment with this at some point in the future). We also
implement the TCP-Vegas congestion avoidance algorithm. We do not implement the TCP-
Vegas Fast Retransmit algorithms. Further, the SCPS-TP has been built with a route-specific

2 There is a problem in calculating this value for a router that has only terrestrial connections

into and out of the router, when the path that a TCP connection takes passes through the
router and a remote satellite link. The router will almost certainly be sized for terrestrial
bandwidth-delay products, although the router at the satellite hop will probably be
appropriately provisioned. However, if the first router is the bottleneck, queuing will
occur at it rather at the satellite terminus. Its buffers will probably be undersized, in this
case.

73

parameter that indicates whether the protocol should interpret losses as indications of
congestion or of corruption. When set to assume that loss is an indication of congestion, the
protocol will halve its congestion window in response to loss. When set to assume that loss is
an indication of corruption, the protocol makes no modifications to the congestion window,
depending on the TCP-Vegas algorithms to make adjustments.

In section A.1.2, we described the TCP-Vegas slow start and congestion avoidance
algorithms. To briefly recap, the TCP-Vegas slow start algorithm doubles the congestion
window every other round trip time until it detects queuing in the network. At that point it
switches to its linear mode, in which it may adjust the congestion window up or down one
segment size per round trip (or may leave it unchanged). The decision to adjust the
congestion window is, again, based on the protocol’s perception of queuing in the network.
This perception is formed by monitoring the round trip times, and TCP-Vegas uses those
times to estimate the connection’s throughput once per round trip time. Decreases in
throughput are taken as indications of queuing.

We wished to examine the response of SCPS-TP’s TCP-Vegas implementation to the
same congestion traffic with which we tested TCP. Figure A-15 shows data rate versus time
for a SCPS-TP connection. The “double-the-congestion-window-every-other-round-trip”
behavior is especially clear in the range between 0 and 6 seconds. The four data points
following that are also slow start – we believe that the non-monotonic nature of these data
rate values are a side-effect of the binning algorithm used to generate the data-rate plot.
(There are two distinct pairs of values, and we believe that some of the rate that should be
attributed to the second point of each pair is being attributed to the first point of the pair. The
“correct” value should be approximately half way between the points of each pair.)

It should be noted that there was no data loss during this test.

Now examine Figure A-16, which shows the sum of the two curves in Figure A-15, and
compare this to Figure A-11 (the corresponding graph for TCP) between times 7 and 10
seconds. We do not see TCP-Vegas exceeding the maximum output rate of the router by as
much as we do in Figure A-11. While it would be nice to attribute this to some particular
virtue of TCP-Vegas, in fact, it appears to be due to the fact that TCP-Vegas’s slow-start
mechanism is enough slower than TCP’s that the congestion traffic had moved on to another
(lower) rate by the time that TCP-Vegas was peaking its slow start traffic. However, the fact
remains that TCP-Vegas’s slow start, augmented by the rate control algorithm that we have
implemented, did not build a large, sustained queue at the router during slow-start (refer to
Figure A-17). It is possible that TCP-Vegas will overrun the capacity of a link and router in
slow start. Whenever a congestion window is large and is doubled, this is a possibility, and
the authors of TCP-Vegas freely admit this. We use the rate control mechanism to help avoid
such overruns, when the capacity of the bottleneck resource is known and there is no
competition for the resource.

74

0

500000

1000000

1500000

2000000

2500000

0 5 10 15 20 25 30

Time (seconds)

D
at

a
ra

te
 (

bp
s)

SCPS-TP traffic

Congestion traffic

Figure A-15. Response of SCPS-TP Traffic to Congestion Traffic

Note that the downward trends in the SCPS-TP data rates shown in Figure A-15 follow
the times when the data rates exceed the capacity of the link (as shown in Figure A-16). The
congestion control algorithm is performing as it should. Note also, in Figure A-17, that the
buffer use during those times has a downward trend. This is very important – the congestion
control algorithm is acting to drain off the queues at the router. If one examines the “plateau”
areas of Figure A-12 (TCP’s router buffer use), one sees that between approximately 8 and 12
seconds and between 13 and 18 seconds that the buffer use is flat, with occasional upward
spikes. The corresponding regions in Figure A-17 show distinct downward trends, indicating
that the protocol is acting to reduce buffer use in the router, and therefore reduce the
probability of congestion and congestion-caused loss. The important thing about this
congestion avoidance algorithm is that the network did not have to be driven to loss to
determine that congestion was present. Stated differently, packet loss is not the sole

75

indication of congestion. This leaves us free to interpret loss differently – for example, as an
indication of a corrupted link, rather than a congested path.

0

500000

1000000

1500000

2000000

2500000

3000000

0 5 10 15 20 25 30

Time (seconds)

D
at

a
ra

te
 (

bp
s)

Aggregate traffic

Figure A-16. Aggregate Data Rate for SCPS-TP and Congestion Traffic

In our examination of Figure A-17, and considering how this information would relate to
other situations, we have come to the conclusion that the ability to adjust the congestion
window (downward) at a rate of only one segment per round trip will not scale well to higher
data rate (that this 2,000,000 bps), long-delay paths. When the congestion window is very
large, on the order of ten times what it is in these tests, we need the ability to reduce the
congestion window much more quickly. We are considering modifications to the TCP-Vegas
congestion avoidance algorithms to allow this.

76

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0 5 10 15 20 25 30

Time (seconds)

B
yt

es

Figure A-17. Estimated Router Buffer Use for SCPS-TP Congestion Test

While TCP-Vegas suffers from notable problems, as mentioned before, we are generally
pleased with its performance in these tests. Its overall congestion performance, as discussed
in the body of this report, is consistent with that of TCP. As we have seen in our detailed
examination, it has some attractive qualities, such as the ability to drain off queues in routers
and the ability to detect congestion from indications other than packet loss.

A.3 Corruption Performance
We now examine the response of these protocols to corruption. As discussed in the body

of the report, we tested the protocols over a wide range of error rates. In this Appendix, we
examine the response to selected error rates in more detail.

To preface this section, discussing the effects of errors on TCP and SCPS-TP
performance, we include the following excerpt from Section 1.1 of the TCP specification
[RFC 793]:

77

“Computer communication systems are playing an increasingly important role in military, government, and civilian
environments. This document focuses its attention primarily on military computer communication requirements, especially
robustness in the presence of communication unreliability and availability in the presence of congestion, but many of these
problems are found in the civilian and government sector as well.

As strategic and tactical computer communication networks are developed and deployed, it is essential to provide means of
interconnecting them and to provide standard interprocess communication protocols which can support a broad range of
applications. In anticipation of the need for such standards, the Deputy Undersecretary of Defense for Research and
Engineering has declared the Transmission Control Protocol (TCP) described herein to be a basis for DoD-wide inter-process
communication protocol standardization.

TCP is a connection-oriented, end-to-end reliable protocol designed to fit into a layered hierarchy of protocols which support
multi-network applications. The TCP provides for reliable inter-process communication between pairs of processes in host
computers attached to distinct but interconnected computer communication networks. Very few assumptions are made as to
the reliability of the communication protocols below the TCP layer. TCP assumes it can obtain a simple, potentially unreliable
datagram service from the lower level protocols. In principle, the TCP should be able to operate above a wide spectrum of
communication systems ranging from hard-wired connections to packet-switched or circuit-switched networks.”

As the use of TCP expanded throughout the Internet, congestion, rather than corruption
became a significant problem. In 1986, the Internet experienced the first of several
“congestion collapses” [11], which resulted in a desperate need to improve the congestion
control abilities of TCP. The simple, elegant solutions that we discussed in the section A.2.1
have served the Internet well since their introduction in 1988 and revision in 1990. However,
the solution to the Internet’s congestion problems came at the expense of TCP’s ability to
handle other forms of loss efficiently. Note that, strictly speaking, TCP is still “robust in the
presence of communication unreliability.” However, in military and tactical environments, the
degradation in performance can be severe, as we will see in this section. One of the key goals
of SCPS-TP is to retain the ability to respond appropriately to congestion, and to restore the
ability to appropriately respond to corruption.

A.3.1 TCP Performance

As mentioned in Section A.2.1, TCP uses data loss as an indication of congestion within
the network. Since most underlying protocols discard damaged packets, most corruption loss
will be interpreted by TCP as network congestion. As we discussed at length in Section
A.2.1, TCP’s response to congestion is to attempt to halve its transmission rate. Clearly, this
is an inappropriate response to corruption loss.

Figure A-18 shows a sequence number versus time trace for a TCP connection operating
in the test environment, with a bit-error rate of 1x10-7. Over the course of this approximately
4,000,000 byte transfer, one TCP segment was corrupted. As we can see from the figure, the
segment is retransmitted at time ≅ 11 seconds. In examining TCP’s response to this loss in
more detail, we see that Figure A-19 looks essentially identical to Figure A-14, which
illustrates TCP’s congestion response in detail. Since TCP cannot distinguish between loss
due to congestion and loss due to corruption, and it must respond to congestion to avoid
Internet congestion collapse, there is no other choice.

78

0

500

1000

1500

2000

2500

3000

3500

4000

0 5 10 15 20 25

Time (seconds)

S
eq

ue
nc

e
N

um
be

r/
10

24 1e-7 BER

Figure A-18. Effect of One Bit-Error on TCP (BER = 1E-7)

Since the loss illustrated in Figure A-18 occurred earlier in the test than did the congestion
loss of Figure A-13, we can illustrate one other aspect of TCP congestion avoidance. In
TCP’s congestion avoidance mode, TCP grows its congestion window by at most one
segment per round trip. This results in a slow, steady increase in the congestion window,
which, in an uncongested network, results in a slow, steady increase in transmission rate. If
one lays a straight edge along the portion of the sequence number versus time trace that
follows the loss (from time ≅ 12.5 through the end of the run), one can see that the line is not
straight, but rather, it curves upward slightly. This corresponds to TCP increasing the
congestion window gradually. (Approximately one packet per two round trips, or one packet
per second, in this case.)

79

1200

1300

1400

1500

1600

1700

1800

1900

2000

10 10.5 11 11.5 12 12.5 13 13.5 14

Time (seconds)

S
eq

ue
nc

e
N

um
be

r/1
02

4 Acks

Data

Figure A-19. Detail of TCP Error Recovery

Figure A-20 illustrates the response of TCP to two bit-errors. The measured bit-error rate
on the link was approximately 6x10-7. The two errors occur within approximately three
seconds of each other, so the congestion window is first halved, then halved again almost
immediately. Recall that, because of the buffer memory imbalance, the congestion window is
reduced to 60% of its previous value after the first loss. The second loss drops the connection
to approximately 30% of its expected throughput. If this occurred late in the run, the effect
would be minimal. The earlier in the run that the errors occur, the greater the impact. The
worst possible case would be for an error or series of errors to occur early in slow start,
because the connection would have a very small congestion window that it could only increase
linearly through the congestion avoidance algorithm. (Refer to the excerpts from RFC 2001
in Section A.2.1 to see in detail why this is so.)

80

0

500

1000

1500

2000

2500

3000

3500

4000

0 5 10 15 20 25 30

Tim e (se conds)

S
eq

ue
nc

e
N

um
be

r/
10

24

Figure A-20. Effect of Two Bit-Errors on TCP (BER = 6E-7)

Figure A-21 overlays the zero-error case with the one- and two-bit-error cases. Each of
these traces is shown as a line, rather than a series of discrete points (hence the vertical and
horizontal line segments in the region of the data losses). Recall that the data rate is
2,000,000 bps on the satellite link. As the data rate increases, the effect of a given bit-error
rate becomes more severe, since the congestion window needs to be larger to fully utilize the
capacity of the higher-rate links. It therefore takes many more round-trip times to grow the
congestion window back to full use of the available capacity.

81

0

500

1000

1500

2000

2500

3000

3500

4000

0 5 10 15 20 25 30

Time (seconds)

S
eq

ue
nc

e
N

um
be

r/
10

24

0 BER

1e-7 BER

6e-7 BER

Figure A-21. TCP Performance with 0, 1, and 2 Bit-Errors

A.3.2 SCPS-TP Performance

We now consider the SCPS-TP response to corruption. Recall that we have modified the
TCP-Vegas algorithm to not halve the congestion window in the event of loss (if a particular
route is so configured, which it was for these tests). In addition to this, we have implemented
a Selective Negative Acknowledgment (SNACK) option. The SNACK option allows the
receiver to inform the sender of missing segments more effectively than TCP’s duplicate
acknowledgment method, and more bit-efficiently than the TCP Selective Acknowledgment
(SACK) option documented in RFC 20183. However, neither SACK nor SNACK are

3 This statement is not intended in any way to diminish the potential usefulness of the TCP

SACK option. We believe that the SACK option has the potential to be an excellent
adjunct to the SNACK option, and that there is a place for both. The major plusses of the

82

congestion control mechanisms – they are both data recovery mechanisms [8]. Both SACK
and SNACK provide TCP greater flexibility in identifying lost data. Standard TCP can only
use its acknowledgment number, and must infer from duplicate acknowledgments that data is
missing. Further, standard TCP has no idea how much data beyond the first segment is
missing, so prudent practice indicates that only the first segment is retransmitted [RFC 2001].
Both SACK and the SCPS SNACK option allow missing data beyond the acknowledgment
number to be identified. The SCPS implementation of TCP-Vegas congestion control allows
us to interpret loss as something other than congestion. This results in the error performance
summarized in the body of this document.

Figure A-22 illustrates a sequence number versus time trace for a SCPS-TP test operating
with congestion control enabled, and a bit-error rate of 1x10-6. Both outgoing data and
arriving acknowledgments are shown, and the packet size is 1452 bytes (1400 of which is user
data. The retransmissions indicate that there were eight packets lost during the course of the
run. (The retransmissions also indicate that there was a bug in our retransmission algorithm.
Each missing segment is retransmitted twice, once when the duplicate acknowledgments or
SNACK arrives, and again just before the retransmission is acknowledged. This is the
unfortunate result of an experiment in persistent retransmission that we implemented, in
which, once a segment is flagged for retransmission, it is retransmitted at a rate of once per
round-trip time until it is acknowledged. The value of this algorithm is still somewhat in
question – it has merit at very high error rates. However, our implementation of it in this test
was flawed, in that our estimate of the round-trip time was too aggressive. We will see in
Figure A-24 that this technique did provide some benefit, and may be appropriate for
implementations that expect to operate in very high bit-error rates.) Once again turning our
attention to Figure A-22, the important point to note is that congestion control is in operation,
but is getting information about the congestion state of the network from queuing
information, not from packet loss. The losses are treated as corruption, and are retransmitted
(under both rate and congestion window control). As a result, the diminishment in overall
throughput is negligible.

SACK option, including applicability to satellite communications, are documented in
[Bruyeron, Fall, Mathis].

83

0

500

1000

1500

2000

2500

3000

3500

4000

0 5 10 15 20 25

Time (seconds)

S
eq

ue
nc

e
N

um
be

r/
10

24

Acks

Data

Figure A-22. SCPS-TP Corruption Response (BER = 1E-6)

Figure A-23 presents the response of SCPS-TP to a 1x10-5 bit-error rate. Over 50
segments required retransmission in this test. Through careful examination of the
acknowledgments in relation to the data segments, we see that for this run at this error rate,
there was no advantage to the aggressive retransmission policy – no retransmissions were lost.
(We realize that the inadvertent multiple retransmission is, in fact, a disadvantage. However,
we can tell from when the retransmissions are acknowledged whether a correct
implementation of the scheme would have been useful.)

84

0

500

1000

1500

2000

2500

3000

3500

4000

0 5 10 15 20 25

Time (seconds)

S
eq

ue
nc

e
N

um
be

r/1
02

4

Acks

Data

Figure A-23. SCPS-TP Corruption Response (BER=1E-5)

Finally, we consider Figure A-24, which is a SCPS-TP run at a bit-error rate of 5x10-5,
with 1452-byte packets. If we refer to Figure 5 in the body of the document, we see that
throughput has noticeably diminished at this error rate (from approximately 68% of the link
capacity to approximately 58%). We also see in this figure that the multiple-retransmission
scheme finally shows some benefit. At times ≅ 11, 15.5, 17, 19.8, 21.5, and 25 seconds, we
see that the initial retransmission is not acknowledged, but the second retransmission is.

85

0

500

1000

1500

2000

2500

3000

3500

4000

0 5 10 15 20 25 30

Time (seconds)

S
eq

ue
nc

e
N

um
be

r/1
02

4

Acks

Data

Figure A-24. SCPS-TP Corruption Response (BER = 5E-5)

87

Glossary

ACTS Advanced Communication Technology Satellite

BER Bit error rate

DOD Department of Defense
DSCS Defense Satellite Communication System
DES Data Encryption Standard

FP File Handling Protocol
FTP File Transfer Protocol
FLTSAT Fleet Satellite Communication System

GN Ground node

IP Internet Protocol
ISO International Organization for Standardization

JTA Joint Technical Architecture

LAN Local area network

MD Message Digest

NASA National Aeronautics and Space Administration
NSA National Security Agency
NLSP Network Layer Security Protocol
NP Network Protocol

OSI Open Systems Interconnect

SCPS Space Communication Protocol Standards
SMC Space and Missiles System Center
SP3 Security Protocol Layer 3
SATCOM Satellite Communications
SP Security Protocol
SGLS Space-Ground Link System
STRV Space Technology Research Vehicle
SN Space node
SNR Signal-to-noise ratio

88

TP Transport Protocol
TCP Transmission Control Protocol
TT&C Tracking, Telemetry, and Command
TPS Test Preparation Sheets

WS Workstation

